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Foreword to the GGF11 Semantic Grid
Applications Workshop

David De Roure

University of Southampton, UK

Fundamentally, Grid computing is about bringing resources to-
gether in order to achieve something that was not possible before.
In the early days there was an emphasis on combining resources in
pursuit of computational power and very large scale data processing,
such as high speed wide area networking of supercomputers and clus-
ters — a view caricatured now as ‘big iron and fat pipes’. As Grid
computing has evolved it continues to be about bringing resources
together but the emphasis has shifted to the notion of Virtual Or-
ganizations, defined by Foster et al in [1]:

The real and specific problem that underlies the Grid concept
is coordinated resource sharing and problem solving in dy-
namic, multi-institutional virtual organizations. The sharing
that we are concerned with is not primarily file exchange but
rather direct access to computers, software, data, and other
resources, as is required by a range of collaborative problem-
solving and resource brokering strategies emerging in industry,
science, and engineering.

In 2001 a group of researchers recognized that this vision of the
Grid is closely related to that of the Semantic Web — which is
also, fundamentally, about joining things up. The value of applying
Semantic Web technologies to the information and knowledge in Grid
applications was immediately apparent, especially in fields which
were already going down this route such as life sciences. In 2001
we already anticipated the service-oriented world that was soon to
follow in the form of the Open Grid Services Architecture, and we
also saw the potential of the Semantic Web in working with service
descriptions. Hence we knew Semantic Web technologies were useful
upon the Grid infrastructure but also within it, directly addressing
the ‘Grid problem’ through describing resources and services.

Over three years we have been building a bridge between these
research communities. The report ‘The Semantic Grid: A Future



e-Science Infrastructure’ [2] was influential in the UK e-Science pro-
gram, initially as a samizdat publication mid-2001. This was followed
in 2002 by bringing people together at the 11th International World
Wide Web Conference and at the 1st International Semantic Web
Conference, with papers reaching out into different communities [3,
4] and a series of talks at various international events. Through the
vision of researchers at the intersection of these communities, a se-
ries of Semantic Grid research projects have been launched. Two
years after the publication of the original Semantic Grid report, the
IEEE Intelligent Systems special issue on e-Science [5], published in
January 2004, reported on Semantic Grid activities across four con-
tinents, and a chapter in The Grid 2 was dedicated to ‘Enhancing
Services and Applications with Knowledge and Semantics’ [6].

The Semantic Grid vision brings a challenging research agenda
but also a promise of immediate practical benefit through deploy-
ment of available Semantic Web technologies in Grid applications
currently under development. For practitioners outside the Semantic
Web community it is important to understand what can be achieved
immediately and what is a research issue. This is the thrust of the
Global Grid Forum Semantic Grid Research Group which was cre-
ated in November 2002, after successful ‘Birds of Feather’ sessions at
GGF5 in Edinburgh and GGF6 in Chicago. We held our first work-
shop in October 2003 at GGF9 in Chicago, consisting of invited
papers from a selection of leading Semantic Grid activities.

For the GGF11 workshop we have very deliberately taken an ap-
plications focus, and we are pleased to hold this event jointly with the
GGF Applications and Testbeds Working Group. The Semantic Grid
Applications workshop is one of three events this summer promoted
by the Semantic Grid Research Group — the others are the Seman-
tics of Grid and Peer-to-Peer Computing workshop at WWW2004,
and the ECAI workshop on Semantic Intelligent Middleware for the
Web and Grid. All these events have had open calls for papers and
we are pleased to see the community growing.

There are many challenges ahead — some of them are set out in
[7], where we remember the ‘Web’ in Semantic Web and the ben-
efits of the network effect and distributed working. There are also
many bridges under construction — to established communities such
as Agent Based Computing but also new communities like Seman-
tic Web Services and Ubiquitous Computing. We are also seeing
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increasing interest in Semantic Grid from the broadening range of
disciplines turning their attention to Grid computing, notably Arts,
Humanities and Social Sciences.

Thanks to everyone involved in Semantic Grid activities. The
Grid, the Semantic Web and now the Semantic Grid are all about
joining things up. We hope that joining people together in this work-
shop is another step towards achieving the vision.
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Abstract. Locating resources is a fundamental problem within large
scale distributed environments. An effective way of solving this problem
is providing and managing metadata about resources. In this paper, we
describe an initial ontology design and the architecture of a distributed
information system that we are implementing. We introduce an efficient
notification based caching mechanism to make metadata available in
open hypermedia peer-to-peer systems.

1 Introduction

This paper describes our initial work designing and developing a
metadata management and discovery system using Semantic Web [1]
technologies, focusing particularly on the problems and needs of the
SERVOGrid (Solid Earth Research Virtual Observatory Grid) [2–4]
project. SERVOGrid integrates measured and calculated earthquake
data (such as fault models, seismic events, GPS measurements) with
simulation codes, all of which are accessed through various Web Ser-
vices. SERVOGrid resources are located at various institutions across
the country, with growing interest in participation from international
ACES [5] partners.

SERVOGrid requires Grid services for remote code execution and
data access, as in traditional science Grids. However, our challenges
also include modeling and managing metadata information gener-
ated by the Grid services. We must also assume that resources are
volatile and not suitable for centralized management: Grid resources
tend to evolve over time, may include very distributed partners, and
may be temporarily inaccessible. Thus information management is
crucial.



This paper introduces our efforts to represent and facilitate the
use of metadata in distributed systems using Semantic Web technolo-
gies. The Semantic Web adopts the Open Hypermedia [6] model. In
this model, resource information, that points users to resources, is
indicated in separate documents. This information is the semantic
metadata. We consider the SERVOGrid environment as an open hy-
permedia peer-to-peer system. In this paper, we describe our initial
ontology design and the architecture of a distributed publish/subscribe
system for managing metadata discovery and access in the SERVO-
Grid environment.

2 SERVOGrid Resources Ontology

In this section, we describe our effort to create ontology aided meta-
data instances for SERVOGrid resources. The SERVOGrid project
has a collection of codes, visualization tools, computing resources,
and data sets that are distributed across the grids. Instances of a
well-defined ontology will be used to describe specific resources as
metadata. We outline the steps of creating a SERVOGrid ontology
as follows.

Defining Classes. The first step is to group together related resources
in order to create an ontology. There are three major groups of SER-
VOGrid resources that need to be classified. These groups are Ser-
voCodes, such as simulation and visualization codes, ServoData, such
as fault and GPS data, and ComputingPlatforms, such as computers
and web services. We observe the following hierarchical classification
of classes to group together SERVOGrid resources in Figure 1.

For lack of space, the full descriptions of the ontology classes are
not given here but they can be found from the preliminary schemas
available at [7].

Defining Properties. Ontology classes are created to group together sim-
ilar resources. Since the class hierarchy does not give any information
about the classes themselves, we defined various meaningful proper-
ties for each class of the ontology. In addition to these properties,
we have also used DC (Dublin Core) [9] and vCard [10] metadata
definition standards in our ontology. In Figure 2, we sketch the prop-
erties that link SERVOGrid Resources. The detailed descriptions of
the properties are available at [7].
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Fig. 1. Class Hierarchy of SERVOGrid Ontology

Fig. 2. Properties of SERVOGrid Ontology

Generating the Ontology and Metadata Instances. As a next step, the de-
scription of these classes and properties are written in the semantic
markup languages RDF/RDFS [11] and OWL [12]. The full ontology
and examples of the metadata instances are available from [7, 8].

As mentioned above, a decentralized approach to metadata man-
agement is desirable. Decentralization of metadata management, how-
ever, leads to potentially low search performance than centralized
approaches. To improve response time and lower network traffic, we
introduce a caching mechanism which is based on notification-based
publisher/subscriber interactions. We discuss the details of our pro-
posal in the following section.

3 Notification based caching approach in managing
metadata

Our system is designed to run as a standalone Java program on
distributed servers. These servers might accommodate a metadata
repository or might be interacting with a separate database repos-
itory through Web Services. The principal feature of the system is
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that after an initialization phase achieved through crawling, it estab-
lishes updatable caches that subscribe to remote resources and listen
for updates. We introduce proxy caching to distribute the copies of
the metadata across the peers in the network. When a user posts
a query to a proxy cache, starting from this cache, at each node,
the cache is queried for the requested metadata and then the query
is passed to nodes that are semantically connected. Results are re-
turned to the proxy cache that initiated the query and the proxy
cache returns results to the client. At each step, each cache relays
the query only to the nodes that it is aware of. We use breadth first
search to simply explore the next nodes if the requested metadata is
not already cached.

When using cached copies across the nodes of the network, infor-
mation consistency becomes an issue. To avoid information incon-
sistency, we utilize a notification based interaction pattern between
the source cache and other caches where remote copies exist. The
caching system is based on a notification-based brokering system
such as NaradaBrokering [13]. In this scenario, each server inter-
acts with the NaradaBrokering system. Our system is designed to
work with one or multiple NaradaBrokers. Each server can be both
a subscriber and/or publisher to different topics. Subscribers listen
to updates of the metadata instances, so that the cached local copy
remains consistent with the original metadata. Publishers are re-
sponsible for publishing any changes in the metadata to the related
topics to keep the cached copies up-to-date. In this scheme, RDF
predicates serve as topics. Subscriber nodes must subscribe to pred-
icate topics to receive the updates for the resources that are in the
range of that predicate. We can illustrate this in the following ex-
ample which is a triple regarding a simulation code “disloc.c”:

Subject: http://www.servogrid.org/servo/instances/servoCode#disloc instance
Predicate: servo:installedOn
Object: http://www.servogrid.org/servo/instances/servoPlatform#grids instance

In this example, the topic would be “servo:installedOn”. Remote
cache copies that carry the instances of the “grids instance” meta-
data (e.g. set of triples describing the grids instance) would listen
to the topic “servo:installedOn” for any updates. The origin cache
for the “disloc instance” resource metadata publishes any changes to
the “servo:installedOn” topic to keep the remote copies up-to-date.
The predicates are uniquely defined by the ontology. The range of
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each predicate is defined based on the SERVOGrid ontology. This
provides an automatic way of subscribing to topics (since we know
which resources can subscribe which topic), that is simple to imple-
ment.

4 Related Work

Finding resources by stepwise exploration has been first studied in
the hypertext community [14][15]. The Lagoon Cache [16] is sim-
ilar to our approach, using the proxy caching method to improve
search performance and bandwidth consumption. Our main differ-
ence is that we utilize the idea of “caching by enforcement”, mean-
ing the resource provider is expected to propagate the updates to all
remote cached copies (by using a notification system) to keep the re-
mote copies up-to-date. The Globus Alliance [17] has released WSRF
Specifications [18] which include WS-Notifications [19]. We find the
following similarities with our approach. Both approaches give the re-
sponsibility of propagating the updates to the service providers. Also,
both approaches have notification based publish/subscribe interac-
tions to notify the corresponding nodes regarding updates. There are
differences however. WS-Notification Specifications define the topics
with XML syntax and the specifications do not define any rules or re-
strictions regarding becoming a publisher or a subscriber to a topic.
We use RDF syntax for the topics and define each topic as predi-
cate of a triple. The SERVOGrid ontology defines the rules regarding
which resources can subscribe which topics.

5 Conclusions and Future Work

This paper has described the ontology development work for de-
scribing SERVOGrid resources. We are coupling this information
representation to a notification-based caching system that will allow
stepwise exploration of metadata instances by using Semantic Web
technologies. In future work, we plan to further study fast and ef-
ficient ways of exploring open hypermedia peer-to-peer systems for
the SERVOGrid project. Our goal is to provide an efficient metadata
management system where semantic metadata is used to describe re-
sources in a distributed fashion.
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Abstract. The CoAKTinG project aims to advance the state of the art
in collaborative mediated spaces for distributed e-Science. The project
is integrating several knowledge based and hypertext tools into existing
collaborative environments, and through use of a shared ontology to ex-
change structure, promotes enhanced process tracking and navigation of
resources before, after, and while a meeting occurs. This paper provides
an overview of the CoAKTinG tools, the ontology that connects them,
and current research activities.

1 Introduction

The CoAKTinG project[1] aims to advance the state of the art in
collaborative mediated spaces for distributed e-Science through the
novel application of advanced knowledge technologies. It comprises
four tools: instant messaging and presence notification (BuddyS-
pace), graphical meeting and group memory capture (Compendium),
intelligent ’to- do’ lists (Process Panels) and meeting capture and re-
play. These are integrated into existing collaborative environments
(such as the Access Grid [2]), and through use of a shared ontol-
ogy to exchange structure, promotes enhanced process tracking and
navigation of resources before, after, and while a meeting occurs.

Section 2 provides an overview of the tools, Section 3 describes
the ontology that interconnects them, and Section 4 gives a glimpse
of current work using the tools.

2 Tools

2.1 Buddyspace

BuddySpace is an Instant Message client (based on the Jabber pro-
tocol) with features that enhance presence awareness. Specifically, it



introduces the graphical visualisation of people and the presence on
a image or map, as can bee seen in the figure. This allows for mul-
tiple views of collaborative workgroups and the immediacy or “at a
glance” nature gives users a snapshot of a virtual organisation. In
a meeting, the instant message capabilities of Buddyspace naturally
provide a “back-channel” to the meeting, for example, conveying
URLs of documents discussed or as a non-disrupting communication.
For distributed meetings, such Access Grid meetings, the presence
of individuals gives an extra indication of co-location (especially if
the videoconferencing technology is failing). The back-channel can
also be used for meeting control tasks, such as queuing of speakers
and voting on issues.

Fig. 1. Buddyspace showing a virtual organisation and presence indicators

For meeting capture purposes, logs of the channel conversations
are made. Individual messages are timestamped and possibly exam-
ined to see if they control meeting specific messages.
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2.2 Compendium

Compendium, first developed in 1993 as an approach to aid cross-
functional business process redesign (BPR) teams, has been applied
in several dozen projects in both industry and academic settings [3].
Its origins lie in the problem of creating shared understanding be-
tween the team members, typical of those attending teams working
over weeks or months to design business processes: keeping track of
the plethora of ideas, issues, and conceptual interrelationships with-
out needing to sift through piles of easel sheets, surfacing and track-
ing design rationale, and staying on track and “bought-in” to the
project’s overall structure and goals [4]. The key feature of the early
approach was the combination of an Issue-Based Information Sys-
tem (IBIS) concept-mapping tool [5], which supported informal and
exploratory conversation and facilitation, with a structured mod-
elling approach [6]. This allowed teams to move along the spectra
of formal to informal representation, and prescribed to spontaneous
approaches, as their needs dictated. It also let them incrementally
formalise data [7] over the life of the project. As the approach was
tested and refined over the course of several years, additional mod-
elling methods were added, plus tools to transform Compendium’s
hypertext models into established organisational document forms,
and vice-versa [8].

Fig. 2. A Compendium map showing various node types and links
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In our experience, Compendium introduces a distinctive element
to the design space of knowledge technologies, namely, making meet-
ings into true events for group knowledge creation which leave a
trace - a structured, collectively owned, searchable group memory
that is generated in real time as a product of a meeting. Effective,
on-the-fly construction of knowledge resources does not come ”for
free” - the lower the effort invested at the capture stage (e.g. sim-
ply video recording all meetings, or taking conventional minutes),
the more work is required for collective reuse and computational
support. Naturally, we want quality knowledge resources for min-
imal effort, and while smart analysis technologies will continue to
push the boundaries, there are pragmatic factors to consider: what
is possible now? Compendium tackles the capture bottleneck that
any knowledge construction effort must confront, by investing effort
in real time quality capture by a facilitator, mediated and validated
by those at the meeting.

2.3 I-X Process Panels

I-X is a suite of tools[9] whose function is to aid in processes which
create or modify one or more “product” (such as a document, a phys-
ical entity or even some desired changes in the world state). The main
interface is the I-X Process Panel (I-P2) which, in its simplest form,
acts like an intelligent “to do” list. The panel shows users their cur-
rent issues and activities, on which Standard Operating Procedures
can be applied to manage complex and long-running processes. I-X
also has a collaborative element to it, in that issues and activities
can be passed between different process panels to enact a workflow
across an organisation. Web services can be called to automatically
enact steps of the processes involved. Progress and completion re-
porting between panels and external services is possible. The under-
lying model on which I-X is based is the <I-N-C-A> Constraints
Model[10]. In a meeting scenario, actions raised in a meeting have a
direct mapping to <I-N-C-A> activities. Actions created in a meet-
ing specific I-X panel are passed onto the relevant user panel’s for
individuals, which, on completion report back.
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Fig. 3. A I-X Process Panel showing pending issues and activities

3 Meeting Replay

Once a meeting has taken place it can be useful to revisit the ideas
and topics discussed. Traditionally, formal minutes are taken to record
the salient points, but often these are too brief to be more than a
simple aide memoire; in the typical CoAKTinG scenario (such as
an Access Grid node) full audio and video logs are available, but
conversely these are too verbose to be of practical use. We require
the ability to select high-level points of reference from the meet-
ing, then “zoom in” to view detailed records. e.g. a user sees from
Compendium notes that a decision was made, but to understand
the subtle reasoning behind that outcome wishes to view the video
of discussion between participants. Each meeting is described using
RDF conforming to the OWL meeting ontology; this represents re-
sources such as: the meeting time, location, attendees, audio/video
recordings, any presentations given (and associated web viewable
versions), and argumentation annotation from Compendium. The
Event / has-sub-event structure held within the RDF is mapped
onto a more conventional time-line, which is automatically published
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using HTML and Javascript on a web site (figure 4). The user can
navigate the meeting using the video timeline, or jump to a differ-
ent point in the meeting by selecting a particular event, such as
a slide being presented, or a Compendium node being created. By
using the shared AKT reference ontology, we can also link to fur-
ther information about resources held in other knowledge bases, e.g.
when a person is referenced we link to information about them in
the populated AKT triple store. We populate the timeline with any
temporally annotated information about the meeting that would aid
the user in navigation.

Fig. 4. The meeting replay tool

In CoAKTinG we have experimented with:

– Agenda item
– Slide exhibits
– Compendium node
– Speaker identification

12



– I-X activity(action item) creation
– Buddyspace chat

By providing all available information we hope to cater for the many
activities and contexts of the user, in a seamful[11] manner.

We can categorise the information presented in the entire meet-
ing replay in terms of the dimensions “structured” and “detailed”,
as shown in figure 5. Video, for example, is high in detail, in that
it captures the entire audio and visuals of the meeting. Structurally,
it is relatively low, since although there is implicit structure (im-
age frames and audio samples) these do not directly contribute to
navigating the structure of the meeting. Video processing could ap-
plied to segment the video into scenes but structurally this would
not provide much more than Speaker Identification. The Agenda,
conversely, is high in meeting structure, but relatively low in the de-
tails. Compendium captures a moderate level of detail in a highly
structured representation.

Low High

S
tructure

Low

Detail

Speaker Id

Agenda

Slides

Compendium

VideoChat

I−X

High

Fig. 5. Meeting Detail and Structure of recorded sources

4 Ontology

The Advanced Knowledge Technologies (AKT) project, with which
CoAKTinG is affiliated, has developed a reference ontology [12] to
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describe the domain of computer science research in the UK, exem-
plified by the CS AKTive Space semantic web application. Within
this domain, its vocabulary is able to express relationships between
entities such as individuals, projects, activities, locations, documents
and publications. For purposes of capturing meeting specific infor-
mation, the reference ontology is already suitable for encapsulating:

– the meeting event itself
– meeting attendees
– projects which are the subject matter of the meeting
– documents associated with the meeting, including multimedia

For activities such as meetings, which we wish to index and navi-
gate temporally, the way in which the ontology represents time is
of particular relevance. The reference ontology contains the notion
of an Event, which is a Temporal-Thing that can define a duration,
start and end times, a location and agents involved in the event.
More importantly, each Event can express a has-sub-event relation-
ship with any number of other Events, and it is with this property
that we build up our temporal meeting structure. Within the ontol-
ogy there are also many Event sub-classes, such as Giving-a-Talk,
Sending-an-Email, Book-Publishing, and Meeting-Taking-Place.

While the reference ontology provides a foundation for describing
meeting related resources, the CoAKTinG meeting ontology (figure
6) extends the OWL version of AKT reference ontology to better
encompass concepts needed to represent collaborative spaces and
activities, including:

– time properties sufficient for multimedia synchronisation
– distributed gatherings to represent meetings which simultane-

ously take place in several spaces, both real and virtual
– exhibition of information bearing objects; e.g. showing a slide as

part of a presentation
– compound information objects; e.g. to describe a presentation

consisting of several multimedia documents
– rendering of information objects; e.g. JPEG image of a slide
– transcription of events; e.g. a video recording of a presentation,

minutes of a meeting
– annotation of events; e.g. making a verbal comment, creating a

Compendium node
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Fig. 6. A simplified representation of the meeting ontology

When a meeting takes place we “mark up” the event with meta-
data - details such as those listed above - to build a structured de-
scription of the activities that occur. Through use of an ontology
shared and understood by several different tools, we can lower the
workload needed to provide usable and useful structure.

5 Case Studies

5.1 e-Response

One CoAKTinG demonstration scenario, termed e-Response, sur-
rounds an evolving environmental emergency: an oil spill is threat-
ening a sea-bird reserve. The response team (whose members are
together assumed to have a wide-ranging scientific background) has
to generate a plan for responding to this emergency – the creation
of this plan is the synthesis task here.

In constructing their plan, the members of the team follow – indi-
vidually and as a group – specific response procedures. While some
of these may be extemporised and contingent on circumstances, oth-
ers may be instances of ’standard operating procedures’, generic ap-
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proaches to archetypal activities, which can be downloaded from
a central web-store. In addition to the human agents in this envi-
ronment, automated agents exist to provide tide data and weather
forecasts, simulate the progress of the oil slick, poll centralised data
stores for details of available human expertise in specific fields and so
on. The interactions are governed by the activities, issues and con-
straints that arise, and mediated by the I-X interfaces of the team
members, which present to them the current state of the collabora-
tion from their individual perspectives, and allow them to decompose
activities, refine elements of the plan, delegate issues, invoke the au-
tomated agents etc, all serving to facilitate the team’s task.

5.2 CombeChem

The CombeChem project aims to enhance structure property corre-
lation and prediction by increasing the amount of knowledge about
materials via synthesis and analysis of large compound libraries. Au-
tomation of the measurement and analysis is required in order to do
this efficiently and reliably while ensuring that wide dissemination
of the information occurs together with all the necessary associated
background (raw) data that is needed to specify the provenance of
the material. The project aims for a complete end-to-end connection
between the laboratory bench and the intellectual chemical knowl-
edge that is published as a result of the investigation; this necessi-
tates that all steps in the process are enhanced by a suitable digital
environment. CombeChem has achieved many parts of this ambitious
programme, e.g. the smart laboratory (smarttea.org), grid-enabled
instrumentation, data tracking for analysis, methodology for publi-
cation@source, process and role based security and high throughput
computation.

The CoAKTinG tools provide support for the e-Science process in
CombeChem and they also enable the digitisation of ’missing links’
in the processing chain which form part of the typical collaborative
scientific processes that we are attempting to enhance using the grid
infrastructure: support of the experimental process, tracking and
awareness of people and machine states, capturing of the discussions
about data as well as the traditional metadata, and enriched meta-
data regarding these components to support interlinking.

The BuddySpace systems can be adapted to show and track the
interactions between the staff and equipment using the National
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Crystallographic Service (NCS), providing information to their users
about the state of the service. Compendium provides the harness to
ensure more adequate capture of the discussions in analysis, while
Process Panels provide the means to initiate and track key tasks
and issues. Additionally the ideas from CoAKTinG provide differ-
ent techniques to achieve the necessary multi-user interaction in real
time over the network and give CombeChem the opportunity to im-
plement the “video interaction” collaboration part of CombeChem
using event based ontologies to annotate real time streaming media
and content.

These various components are valuable complements to Combe-
Chem individually but jointly are even more powerful. For example,
Process Panels can exploit the presence information derived from
BuddySpace with respect to instrument status and operator avail-
ability to offer more informed task delegation options. This com-
pletes the chain of digital support and capture, maximising the po-
tential for re-use of the digital information in support of the scientific
process.

The following figure illustrates one particular aspect of the deep
integration – the application of the Process Panel tool to the labora-
tory, building on the process capture work of CombeChem’s Smart
Tea team.

Figure 7 shows a screen capture of an I-X Process Panel and
its Map Tool resulting from our initial experiment. The Map Tool
depicts a real Chemistry lab where both fixed and mobile entities
are represented. The positions of mobile entities such as movable
equipment and technicians are updated automatically through the
(World) State sub-panel. By sharing information with BuddySpace,
(dynamic) properties of devices are also described in the same panel.
At this particular point in time, it shows Technician-2 is in front of
the Rotary Evaporator and about to carry out the sub-process “Re-
move solvent from the-mixture using Vacuo results in Compound”,
having completed the previous steps in this process. In our investiga-
tion, the process decomposition facility of the I-X Activity sub-panel
supports views of different levels of abstraction that fits nicely with
different chemists’ (and labs’) practice. Activities, issues, annota-
tions and constraints may be recorded directly or via Compendium
where in-depth discussion has taken place. Static and dynamic pro-
cess editing provide great flexibility as processes are modifiable at
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run-time in response to unexpected changes. The ability to store,
retrieve and refine process models is important in the Chemistry
domain where existing processes are constantly reviewed and modi-
fied to discover or synthesise new chemical compounds. This facility
alone makes I-X a valuable back-end component for integration with
the existing CombeChem Grid.

Fig. 7. I-X Process Panel configured for e-Chemists

6 Conclusions

This paper has introduced the tools that have been developed by
the CoAKTinG project and identified how they are typically used in
meetings, and also shown how they are being explored in scenarios
such as e-Response and CombeChem.
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Abstract. Advances in computational resources, the concept of the Grid
and the development of middleware and applications to build and sup-
port the Grid will give Grid users the power to access and interpret large
amounts of heterogeneous data. Metadata, data that describes data, can
be used to represent and define the protocols of the Grid, as an abstrac-
tion between services and datasets, and to provide syntactic or semantic
descriptions and annotations of any sized datasets so that they may be
discovered, communicated, and analyzed efficiently. In this document, we
will present “Mobius”, which can be described as a generic and extensible
set of protocols and services for managing data in a Grid environment.

1 Introduction

With the emergence of Grid computing and Web services architec-
tures, it is increasingly critical to address the information service
needs of loosely coupled systems. A multi-institutional Grid envi-
ronment will contain many data sources, which maintain different
types of data using different storage mechanisms. Management of
data and metadata is a major task in such systems. Seamless in-
tegration of data can facilitate the discovery of data-oriented find-
ings that would not be possible without a system that supports the
distributed management of metadata and data in a scalable envi-
ronment. A middleware system which provides basic building block
services for metadata and data management can be extended by
many other service areas such as semantic query services, ad-hoc
data warehouse services, and specialized data integration services.

In this paper, we describe the architecture of Mobius, a middle-
ware framework designed for efficient management of data and meta-
data in dynamic, distributed environments. Its design is motivated
by the Grid [7, 5, 6] (in particular by the activities of the Data Ac-
cess and Integration Services group at Global Grid Forum [8, 4, 1, 2]



), by earlier work done at General Electric’s Global Research Cen-
ter [13], and by particular domain application area requirements.
Biomedical research studies, for example, can involve integration of
data, including proteomic, molecular, genomic, and image data in a
multi-institutional environment. Mobius provides a set of generic ser-
vices and protocols to support distributed creation, versioning, and
management of data models and data instances, on demand creation
of databases, federation of existing databases, and querying of data
in a distributed environment. Its services employ XML schemas to
represent metadata definitions (data models) and XML documents
to represent and exchange data instances.

As an example, consider biomedical research studies that collect
data in complex data types, with partial syntactic and semantic
overlap. A researcher can develop a hypothesis and accrue several
types of patient and laboratory related data. The researcher needs
to create databases to maintain data for patients and laboratory re-
sults. Data may have also been previously stored in multiple sources
and databases, potentially created by other researchers. In which
case, data must be integrated from these potentially heterogeneous
sources for analysis. The researcher should be able to use a system to
create an ad-hoc data warehouse spanning multiple databases (2D
gel data, clinical data, lab data, drug treatment data, and molecular
data) to enable distributed analysis. The researcher should also be
able to use the ad-hoc data warehouse to carry out queries to test
hypotheses. Any two databases may define data that contain the
same semantic content with completely different structure represen-
tations. The analysis of data may lead to collection of new datasets
as well as new types of data. This type of scenario can be supported
by a system that will allow the researcher to:

– create schemas which describe their data models, register and
share these data models with other collaborators, manage and
version them while new data types are added or deleted,

– facilitate translation between data models that have the same
semantic meaning, but different structure, and

– create, integrate, and manage databases and data that conform
to these data models.

Mobius consists of three core service areas: Global Model Ex-
change (GME), Data Instance Management (Mako), and Data Trans-
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lation Service (DTS). These service areas and underlying proto-
cols support distributed creation, versioning, management of data
models defined by XML schema, on-demand creation of distributed
databases, federation of existing databases, querying of data in a dis-
tributed environment, and on demand translation of instance data
from one data model to another.

Using Mobius, the biomedical researcher can develop databases
and querying capabilities for her studies as follows. The researcher
first designs XML schemas describing the data types she wants to
maintain. The GME provides several alternatives for the researcher
to create and register her schemas: 1) The researcher can search the
GME for existing schemas and may use one that suits her research
study. 2) She can version an existing schema by adding or deleting
data attributes. 4) The researcher can create a new schema with new
attributes and structure. 5) She can compose a schema using new
attributes and by referencing multiple existing schema entities in her
schema. Once the schema is created, it is registered with the GME
so that other researchers can search for it, and the Mako services
can use it to create new databases and validate data against its data
model. The researcher can now instantiate one or more Mako servers
to maintain the databases conforming to the schemas. She can also
register the schemas with existing running Mako servers. The Mako
servers create databases using the XML schemas so that new data
can be entered and maintained across the system. When a new data
set is submitted (as an XML document) to a Mako server, the server
ingests the document, stores the data specified in the document in
the databases, and indexes them. Any given data set can also be
distributed across a collection of Mako servers and rematerialized as
needed at query or retrieval time. With the data effectively stored,
the researcher can then retrieve data from these databases using
queries expressed in XPath [3].

2 Requirements

As mentioned earlier, the world is increasingly becoming more de-
pendent on electronic data management from patient medical records
and research data spread across institutions around the world to re-
mote monitoring of airline engine sensor data. Data is everywhere,
and the easier that it can be integrated and used together the more
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useful it becomes. This section will enumerate some basic require-
ments for managing data in a grid environment and elaborate on
each in a use case driven approach.

2.1 Global Model Management

In order for services on the grid to communicate with each other,
their data must be described in a format that is understood by each
involved component. Thus a data management system for the grid
must provide a method for defining metadata and data, we will refer
to this definition as a data model. A data model is the specification
of the structure, format, syntax, and occurrences of data instances.
In order for services to communicate with one another they must
agree on a data model over which they communicate. In order for
such models to exist, they must be globally available to every service,
assuming the service has access control rights to obtain and view the
model. Making data models globally available and uniquely identi-
fiable forms a conceptual global model consisting of the individual
models. Therefore, given proper credentials, one model may refer-
ence previously defined entities in another model. For example, if
the entity Patient is defined in the model Hospital, it could be ref-
erenced by the model Clinic. This means that the Clinic’s definition
of Patient is equivalent to the Hospital’s definition of Patient. Since
all entities are globally identifiable, entities within the schema must
be unique. Therefore once the Patient entity is defined, it cannot be
defined by another model. Although this promotes standardization
of data definitions, this will not be an acceptable solution for the
grid, as there will invariably be competing definitions for these enti-
ties. This problem can be solved by namespaces. Entities defined in
models should be assigned to a namespace, where entities are unique
within their namespace. The combination of the entities name and
namespace makes the entity unique within the grid. Thus, entities
can be referenced, systems and data integration become simpler, and
standards can be promoted.

2.2 Data Instance Management

Services on the grid will need a method for storing and querying data
and metadata. This will be integral for service communication on the
grid. Given valid credentials, data should be able to be stored across
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a series of heterogeneous loosely-coupled machines. This will allow
for data storage systems to be virtually any size and scale within
the grid as well as become ad-hoc and dynamic in size and shape.
The system should also provide the ability to allow trusted users to
update, query and delete the data. These generic base storage service
interfaces can be extended by application specific grid users in order
to tailor them for specific needs.

2.3 Data Translation

It will often be the case that institutions will have different methods
for modeling data which may be conceptually or semantically the
same. It would be beneficial to both institutions to be able to trans-
late between one another’s data models such that each can leverage
the other services. Where possible, the simplest way to share data
and services is to use common models, but in practice, this is not
always possible. This begs the existence of a registry architecture
for managing and discovering services on the grid that translate be-
tween defined data models. Such an architecture would allow services
to programmatically identify and leverage other computational ser-
vices which would otherwise not be possible. This, of course, does
not mean that the automatic structural or semantic data translation
problem is solved. This simply gives a service architecture where
data translation services, possibly written by domain experts, are
published and can be trusted between the two domains in which the
data is translated and potentially accepted by others as the standard.

3 Related Work

Due to the nature of a large componentized middleware architec-
ture, covering all possible related work which may be leveraged by
this architecture is beyond the scope of this paper. In this section we
will cover the related work which deals specifically with grid mid-
dleware protocols and grid metadata management; the main con-
tributing components of the mobius architecture. We will not cover
related work pertaining to specific service implementation details.
However, if there is related work which addresses a similar problem,
as a Mobius service implementation, it can simply be wrapped with
the Mobius service protocols or be used in coordination with the
Mobius middleware.
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There have been several projects which focus particularly on ser-
vice infrastructure for metadata management, and a few which specif-
ically target execution on the grid. Storage Resource Broker (SRB) [20]
in coordination with the Meta Information Catalogue (MCAT) [15] is
a grid-enabled middleware system for accessing heterogeneous data
storage services in a client-server framework. In its current incarna-
tion, the SRB system uses the term metadata to mean a predeter-
mined set of key-value pairs which describe attributes of the data
set. The user can add extra key-value entities which can be used to
query and discover data sets in the SRB framework. The key defining
difference between the SRB/MCAT solution and the Mobius frame-
work is the way in which metadata is handled in the environment.
The metadata in SRB is not a user-designed structure which is a
published and managed entity. It is used to describe a specific data
set or data sets and the metadata itself does not contain a partic-
ular unique name, or structure (other than key-value). The Mobius
framework enables structured metadata of any size or shape to be
user-defined, published, and managed. It also enables instance data
conforming to this data to be created and validated. Although the
two systems at a high level seem to support similar interactions,
store and retrieve data which can be queried and discovered using
metadata, they are quite different in scope and direction.

Another grid system for management of metadata is the Meta-
data Catalog Service (MCS) [16]. The MCS system was originally
created to support metadata management in the Grid Physics Net-
work (GryPhyN) [10]. MCS is closely related to SRB in that its
current use and aim is to store metadata about logical files in a data
grid. Although it does not provide standard data access interfaces
that SRB or Mobius provides, it does store and allow querying of
these logical files’ metadata. Like MCAT, MCS models metadata as
a set key-value pairs and not as a user-defined complex structure
which can be comprised of other user-defined structures. Mobius ad-
dresses the concern that a generic platform for metadata in a grid
should be capable of being structured and comprised of pre-existing
structures from experts of their respective domains.
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4 Global Model Exchange

The driving force behind the need for a global service architecture
to manage user-defined data models can be laid out as a set of use-
case driven requirements. A user in the grid would like to be able
to create, publish, and version a data model, possibly defined using
XML Schema. That model may be used by many other services at
service runtime. This feature requires that those requesting services
be able to request model definitions by namespace and name, and
be guaranteed that they will receive the same model as any other
service issuing the same request. The publishing grid user would
like other grid services to be able to use that model and detect
and use its changes, enabling possible programmatic updating of
running services. A particular model may be made up of several
sub-models as defined under different namespaces. The grid user
would like to be assured that when a model is referenced in the grid,
there is some assurance it is always available, as well as any of the
sub-models that it may be referencing which are defined by other
grid users. A service infrastructure that provides an implementation
of these requirements would be the core building block for other
services as model-to-model translation or mapping services, generic
ad-hoc model instance storage services, and robust service-to-service
data communication. These requirements could mostly be met with
a combination of current technologies and with a large amount of
new philosophic agreements with all users. For example, the current
defacto standard for schema publishing uses web servers, HTTP,
and DNS maintained namespaces, and schemas are downloaded via
HTTP requests to a URL matching their fully qualified names. If a
certain level of service and availability could be guaranteed, servers
maintained all pervious versions, and authorities were put in place
to allow users to publish schemas to appropriate namespaces, we
could approach a solution to these problems. However, a new set of
grid services with the sole purpose of providing an implementation
of these requirements will be much easier to adopt in practice, and
will be a fundamental building block of many future data driven grid
services.

The Global Model Exchange (GME) is a service that responds
to the requirements stated above. It is responsible for storing and
linking data models as defined inside namespaces in the distributed
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Fig. 1. GME Architecture

environment. The GME enables other services to publish, retrieve,
discover, remove, and version metadata definitions. The GME ser-
vices are composed together in a DNS-like architecture representing
a parent-child namespace hierarchy as shown in the figure 1.

The GMEAccess interface is the user-level interface that exposes
the functionality of these protocol messages through a basic set of
service access methods. A user service can use the GMEAccess inter-
face to publish a model, request an instance of a particular version of
a model, and post a query against the models of a particular GME
namespace.

The GME provides model version and model to model depen-
dency management. For instance, if a user service publishes a model
to the GME, and later the model is modified and republished, the
model will automatically be versioned and both models can be used
concurrently. Furthermore, if a suitable translation mapping is pro-
vided for changes between the two versions, they can be interchanged
seamlessly. The protocol provides a mechanism for stating the ex-
act version of a model for a given request. A model can also con-
tain types defined by other models or references to types contained
in other models. This reference integrity might be considered the
largest requirement for a GME that the current use of a URL does
not provide. The role of the GME in the greater picture is to ensure
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distributed model evolution and integrity while providing the ability
for storage, retrieval, versioning, and discovery of models of all shape,
complexity, and interconnectedness in a grid-like environment.

A future extension of the GME service architecture would be to
support semantic model storage, versioning, and querying. Storing
data models without semantics is a base case building block for be-
ing able to begin to store, search, and reason about semantic data
models. We would like to extend the GME basic service by not only
storing the model, but also adopting a semantic model definition
language such as RDF [18] and provide higher level querying for
those models. One could imagine being able to pose the question,
”Are there any models published anywhere in the grid that have
something to do with cancer research?”. With higher level semantic
model storage and querying, questions like this can be applied across
all data models in all namespaces in the grid.

5 Mako

Mako is a service that exposes data resources as XML data services
through a set of well-defined interfaces based on the Mako protocol.
A data resource can be a relational database, an XML database, a
file system, or any other data source. Data resources are exposed
through a set of well-defined interfaces, thus exposing specific data
resource operations as XML operations. For example, once exposed,
a relational database would be queried through Mako using XPath
as opposed to querying it directly with SQL. Mako provides a stan-
dard way of interacting with data resources, thus making it easy for
applications to interact with heterogeneous data resources.

5.1 Mako Interfaces

The Mako client interfaces are similar to those of an XML database,
however, since Mako is a distributed service, the interfaces them-
selves are motivated by the work of the Data Access and Integration
(DAIS) [4, 1, 2] working group in the Global Grid Forum (GGF) [8].
Mako defines a set of access interfaces that define the data opera-
tions, and it also defines a set of handles that implement said oper-
ations on a given context. For example, the XPathAccess interface
which defines XPath operations, is implemented by the XMLCol-
lectionHandle and by the XMLDocumentHandle. In the context of
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the XMLCollectionHandle the XPath operations are implemented
and applied across the entire collection, whereas in the context of
the XMLDocumentHandle the XPath operations are performed only
against the XML document that the XMLDocumentHandle repre-
sents. In all Mako provides three handle types, a XML Data Service
Handle, a XML Collection Handle, and a XML Document Handle.

5.2 Mako Architecture

Clients interact with Mako over a network; the Mako architecture
illustrated in Figure 2 contains a set of listeners, each using an im-
plementation of the Mako communication interface. The Mako com-
munication interface allows clients to communicate with a Mako us-
ing any communication protocol. For example, if the communication
interface is implemented using Globus [9] security, clients may com-
municate with Mako using the Globus Security Infrastructure (GSI).
Each Mako can be configured with a set of listeners, where each lis-
tener communicates using a specified communication interface.

Fig. 2. Mako Architecture

When a listener receives a packet, the packet is materialized and
passed to a packet router. The packet router determines the type of
packet and decides if it has a handler, described below, for processing
a packet of that type. If such a handler exists, the packet is passed
onto the handler which processes the packet and sends a response to
the client.
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5.3 Mako Protocol

The Mako Protocol defines a set the packet types that a Mako may
process. This section will give an overview of some of the operations
that the Mako protocol supports.

Service Data Service Data, a term often used by the OGSI [17]
working group in the GGF, refers to metadata about a given ser-
vice. Mako service data contains information on when the Mako was
started, information on the underlying data resource, a list of request
types supported, etc.

Collection Management In the context of XML databases, the com-
mon nomenclature for referring to a group of related instance docu-
ments in a single storage service is a Collection. This is very similar to
the relational database concept of a database. The concept diverges
slightly, in that collections can have sub collections, and collections
may not have a single schema (or any at all) associated with them.
Mako has three request packets for managing collections of XML
documents. The CreateCollectionRequest packet is used to create
a new XML collection on a Mako. The RemoveCollectionRequest
packet can be used to remove a collection from a Mako. Finally, the
CollectionListRequest packet requests a list of collections that exists
on a Mako or in a sub collections on a Mako.

Schema Management Each collection in Mako can be restricted to
only accept XML documents from a set of certain types. This is ac-
complished by specifying a set of XML schemas in which a XML
document must be validated against. The Mako protocol provides a
method for adding and removing schemas to and from an XML col-
lection within a Mako. The SubmitSchemaRequest packet is used to
submit schemas to a collection in a Mako, and the RemoveSchemaRe-
quest packet removes them. The SchemaListRequest packet can be
used to get the list of schemas supported by an XML collection.

Document Management The Mako protocol defines methods for sub-
mitting, updating, removing, and retrieving XML documents. The
SubmitXMLRequest packet is used to submit documents to an XML
collection in a Mako. Upon submission, Mako assigns each entity a
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unique identifier; later we will see why this identifier is important.
XML documents that reside in a Mako can be updated using XUp-
date [14], the XUpdateRequest packet is used to accomplish this.

Mako provides two methods of removing documents. First, a list
of documents can be removed by specifying their unique identifiers,
this is done using the RemoveXMLRequest packet. Second, XML
documents can be removed by specifying an element identifying
XPath [3] expression. The XPathRemoveRequest packet is used to
remove XML documents that meet an XPath expression.

The RetrieveXMLRequest packet is used to retrieve XML docu-
ments, or a subset of XML documents, from a Mako. Documents,
or subsets of XML documents, can be retrieved by specifying their
unique identifier. Recall that each element in an XML document is
given an identifier, making any subset of a document uniquely ad-
dressable. The Mako protocol also allows the level of retrieval to be
specified. For example, if you think of an XML document as a tree,
then given a unique identifier, one would be able to specify how
many levels of children should be included in the materialization
of the document. Elements containing children that are below the
height specified would not be included in the materialization, how-
ever references to their immediate children would be included. This
feature becomes quite valuable when working with large datasets, in
that full documents do not need to be materialized just to view par-
tial results. It also allows one to build a demand driven Document
Object Model (DOM) on top of the protocol. In general such a fea-
ture improves application performance by allowing the application
to specify how data is materialized.

Querying Mako provides query support through the use of XPath [3],
XPath queries are performed using the XPathRequest packet.

5.4 Mako Handlers

As specified in the architecture section, when a Mako receives a
packet, the packet is given to the handler that processes that type
of packet. Thus, for each packet type in the Mako protocol, there
is a corresponding handler to process that packet type. In order to
abstract the Mako infrastructure from the underlying data resource,
there is an abstract handler for each packet type. Thus, for a given
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data resource, a handler extending the abstract handler would be
created for each supported packet type. This isolates the processing
logic for a given packet, allowing a Mako to expose any data resource
under the Mako protocol. The initial Mako distribution contains a
handler implementation to expose XML databases that support the
XMLDB API [21]. It also contains handler implementations to ex-
pose MakoDB. MakoDB is an XML database optimized for interact-
ing in the Mako framework. Implementations exposing other data
services will be distributed as they become available.

5.5 Exposing a Data Service with Mako

Data services can easily be exposed through the Mako protocol by
creating an implementation of the abstract handlers. Since there
is an abstract handler for each packet type in the protocol, data
services can expose all or a subset of the Mako protocol. Once handler
implementations exist, Mako can be easily configured to use them.
This is done in the Mako configuration file, which contains a section
for associating each packet type with a handler.

5.6 Global Addressing

We mentioned earlier that Mako provides a method of uniquely iden-
tifying elements contained in XML documents. In actuality these
elements are uniquely identified across the collection in which they
reside. Mako also provides a method of globally addressing XML
elements. This is done using the three tuple id, (Mako URI, collec-
tion, elementId). Being able to globally address entities within Mako
provides several advantages. Most importantly it facilitates data fed-
eration across multiple Makos.

5.7 Virtual Inclusion

One example of how data may be federated across multiple Makos
is by virtual inclusion. Virtual inclusion is a reference within an
XML document to another XML document. This means that Mako
allows XML documents to be created that may contain references to
existing XML documents or elements, both local and remote. In this
way, an XML document can be distributed and stored across multiple
Mako servers by storing subsections of the document remotely and
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integrating them with references. This ability is critical in enabling
large data documents to be partitioned across a cluster while still
maintaining the single document semantics of a model.

5.8 VMako

Utilizing Mako’s component architecture, alternate protocol han-
dlers can be installed in a Mako server to enable it to utilize re-
mote Mako instances. The Virtual Mako, illustrated in Figure 3, is
a collection of protocol handler implementations that extend the op-
eration of the data services to operate on an administrator-defined
set of remote Makos. It maps a number of Virtual Collections to a
set of remote collections. This simplifies the client-side complexity
of interfacing with multiple Makos by presenting a single virtualized
interface to a collection of federated Makos.

Fig. 3. Virtual Mako

For example, the SubmitSchemaHandler is extended to broadcast
schema submission requests to all remote Makos, and return an ag-
gregated response. The SubmitXMLHandler utilizes a configurable
data ingestion algorithm to determine what to do with submitted
instance data. It can be configured to distribute instance data to
supporting Makos via a Round Robin scheduler, or any other de-
sired distribution mechanism. Other handlers are implemented in a
similar fashion. The Virtual Mako could also be utilized to decluster
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large data types. By utilizing virtual inclusion, a submitted XML in-
stance document could be broken down into separate sub-documents,
and distributed across remote Makos. A new document containing
references to these sub-documents would then by created and stored
in a selected remote Mako. A XMLDocumentHandle to this new
document would be returned to the client. A request to materialize
this document would then completely restore the original document.

While this virtualization eases the burden of interfacing with mul-
tiple Makos, the primary purpose for a Virtual Mako is to enable
distributed query execution. In a Virtual Mako, the XPathHandler
is implemented such that requests are broken down into sub-queries
and sent to appropriate remote Makos. Responses are then aggre-
gated at the Virtual Mako, and returned to the client. In the current
implementation, the Virtual Mako acts as a simple mediator and
aggregator. The architecture was designed such that this could be
replaced by a sophisticated distributed join implementation without
affecting any client-side code.

Future work for extending the Virtual Mako concept will focus
on adding semantic information about remote data types such that
the Virtual Mako can make informed decisions about where to store
data, as well as utilizing this information to enable ad hoc queries.
For example, with ontological knowledge of remote data types and
their relationships, a query could be executed by utilizing data trans-
formation services and by querying for semantically compatible data
types instead of strict class equality.

6 Data Translation Service (DTS)

The Data Translation Service (DTS) is responsible for managing
the translation between data types. It accomplishes this task by
maintaining a registry of remote mapping services, which provide
pairwise translation between namespace elements. As an example,
consider the use case where a data type A is required to be trans-
lated to datatype B. There are two primary motivators for the DTS.
The first driver is the need to maintain the link between data stored
against a particular version of a schema and future versions, as the
schema evolves. As data in Mobius is strongly typed against a par-
ticular version of at least one schema, it is important to be able to
easily migrate data adhering to a schema when the schema changes.
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Given a suitable mapping service from one version to the next, data
could either be migrated to the new schema, or left unchanged but
migrated on-demand when requests for data adhering to the new
version is requested.

A second driver is the need to seamlessly translate data types that
are semantically similar but syntactically different. As the number of
distributed data sources and data types increase, the need for trans-
lation between common data types becomes extremely important.
It is unreasonable to assume that in a Grid environment all services
will use the same data types for services that are slightly related. It is
also unreasonable to assume that even if the Grid started out using
the same data types for services, that those data types would not
slowly evolve and change over time. Inevitably there are subtle dif-
ferences between services that work on related data that necessitate
variations in the data’s representation. Rather than try to impose
a universal standard representation for all data types, Mobius takes
the approach of encouraging organizations to represent their data as
they see fit, while still enabling them to inter-operate with similar
data types via a DTS published translation service. The hope is that
by easing the data transition between separate schema versions, and
even completely different schemas, the communities will be able to
evolve standards organically where standards are appropriate.

While the DTS enables point to point translation of data types,
it is expected that mapping services will be provided that map their
data types to appropriate standards, and from said standards to their
data types. This will enable a broader range of transitive mappings
without requiring explicit mappings for every data type.

The basic DTSR (Data Translation Service Registry) is a simple
registry style service architecture. A DTSR will contain the infor-
mation that describes the individual DTSs that are running on the
grid. Any user can build a DTS publishable service as long as their
service implements the DTS service interface and registers itself with
a DTSR who is responsible for one of the namespaces it is mapping
to or from.

Once this service infrastructure is put in place you can envision
the DTS being extended to be able to begin to do semantic transla-
tion. A user could begin to pose questions like ”Can anyone map my
’car’ to their ’car’?”, where ”car” is some model that has some mean-
ing to the user to be the semantic model of a car. This will require

35



an ontology registry which will store semantic information and rela-
tionships about registered namespace elements. It is expected that
for many pairs of data types there will be many possible translations
between the two, and a semantic model and query language will be
required for users to specify translation preferences. Research in this
area is ongoing, but it is our belief that a schema-based structural
translation service is a necessary base case required prior to support-
ing semantic translation.

7 Applications

Although Mobius is a research effort still under active development,
it has been successfully leveraged as a data management middle-
ware for several applications. In a collaboration with Rescentris, a
company focusing on information management solutions to enhance
life sciences research and development, Mobius has been utilized to
provide a framework for integrating and aggregating collections of
disparate medical data sets. This work employed Mobius’s ability
to store, retrieve, and query distributed data sets modeled by XML
schema. By using referenced model elements to describe common
medical metadata, this application was able to interrogate biologi-
cally relevant portions of distinct medical data sets. Specifically, a
Virtual Mako was used to query and aggregate distributed data sets
representing single nucleotide polymorphisms, and molecular cyto-
genetic data, via XPath queries.

Mobius has also been leveraged in several applications which oper-
ate on large medical image data sets. The Distributed Image Archive
System (DPACS), was designed to support generic image archival
and management in a grid wide environment, and relied heavily on
the Mobius framework’s ability to perform on demand data loading
using remote element referencing(Virtual Inclusion). The DPACS
system consists of a front end client application and a collection of
federated back end Mako servers. The Mako servers provide the im-
age and metadata storage and retrieval, and the client application
can be used by user to upload, query, and inspect the archived data.
The DPACS client broadcasts data reference queries to the remote
Makos and is able to quickly display the resultant data sets. The re-
quested aspects of the data sets are then loaded on demand as needed
by the client, such as the metadata, volumetric thumbnails, and ul-
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timately the image data itself. In another work, Mobius was used to
store and manage image processing workflows and image data sets in
a system to support rapid implementation and distributed execution
of image analysis applications [11], implemented using the Insight
Segmentation and Registration Toolkit (ITK) [12] and Visualization
Toolkit (VTK) [19]. In this work the processing pipeline discovered
work by querying Makos, and processing components utilized Makos
to retrieve and store their input and output data sets.

BlockMan, an application which is under current development,
supports the distribution and indexing of extremely large data sets
which may not fit within a single nodes storage limit. The BlockMan
will ingest large binary data sets, partition and distribute the chunks
based on a user specified model and distribution algorithm. It then
providesa query interface into data and parallel retrieval of queried
results. The uniqueness of this system is its ability of the user to add
queryable meaning to the data set by allowing rich structured user-
defined metadata to be attached to the data chunks. This enables
the users to interactively query into datasets which before were not
only hard to manage physically but extremely hard to locate and
interrogate.

8 Conclusion

As the development of the concept of the Grid continues to evolve,
we feel protocols and services for managing metadata, data descrip-
tions, and datasets will play a critical role in the ultimate realization
of the Grid. In this paper we have introduced the three core services
of Mobius: Global Model Exchange (GME), Data Instance Manage-
ment (Mako), and Data Translation Service (DTS), and shown how
they can be leveraged both as a data integration framework in insti-
tional research studies, and as key components of a global Grid.
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Abstract. The ability to submit jobs to foreign computational resources
is a core requirement in all compute grids. Existing distributed resource
management systems and job submission gateways require jobs to be
described in propreitary languages that render transparent submission
difficult. Standardisation effort to create a common language might re-
solve this problem. However, reliance on natural language documentation
and the lack of a formal model to describe job attributes makes trans-
formation error-prone and open to ambiguity. In this paper, we present
the use of a generic transformation framework applicable to schema-
tised language annotated with ontological metadata to job description
documents. The paper demonstrates a meta job submission service util-
ising the framework to dynamically integrate and select heterogeneous
resource management systems by transforming input job descriptions.

1 Introduction

Job Submission Service is one of the most important building block
in a Service-Oriented Architecture based compute grid. There are
many heterogeneous distributed resource management systems (DRM)
providing propreitary interfaces to computational resources. Access
to these systems can be characterised by the communication layer,
notably command-line interface, socket-based approach, API with
different language-bindings[8][9], HTTP web access and the recent
adoption of Web Services. Apart from the means of communication,
varieties of job description languages have been devised to describe
the parameters of the job, such as input, output, arguments, system
requirements, etc..

Although architectural differences between stakeholders can be
accommodated by providing connectors or API to hide the com-
munication detail, the diversity of job description however presents



difficulty for clients to transparently access any computational re-
sources without specific knowledge of the description syntax and se-
mantics. It induces lock-in, hindering the network effect of Grid-wide
job submission.

Recent effort of the Job Submission Description Language work-
ing group[7] in the Global Grid Forum aims to solve this problem by
standardisation. The JSDL language presents a common extensible
job description template absorbing many features accumulated from
existing languages. The current form of the language centered around
the notion of job attributes apparent in many languages (e.g. Clas-
sAd[11], Globus RSL[10]). The standardisation effort aims to docu-
ment a set of attributes and their meaning to achieve a common un-
derstanding across systems, therefore DRM vendors or third-parties
can device transformations to their proprietary language without
re-architecting their systems.

This paper motivates the use of ontology to compliment the de-
scriptive nature of job submission language. Inferences on the rela-
tionship of attributes defined in heterogeneous job descriptions can
provide insights to perform automatic transformation in some cases,
or aid manual engineering in the under-specified ones. We argue
that the current standard expressed in natural languages can be
augmented with a formal model. We will provide an overview of
a generic transformation architecture prototyped in ICENI[12]. The
architecture exploits ontological metadata expressed in the Web On-
tology Language (OWL)[3] attached to XSD schemas, in order to
dynamically transform semantically compatible schematised XML.
We will demonstrate how the transformation architecture is instan-
tiated inside a meta job submission service to integrate and select at
runtime a variety of compatible DRMs automatically. The exemplar
also motivates application of this technique to other Grid services in
a generic fashion.

2 ICENI Semantic Transformation Framework

The Semantic Transformation Service is a core element in ICENI
to facilitate message exchanges between syntactically and architec-
turally incompatible services based on semantic and syntactic trans-
formation augmented with architecture connectors. The transforma-
tion service extracts message semantics from ontology documents
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and reasons on their semantic compatibility. If message format is
semantically compatible and transformable, the messages are trans-
formed dynamically and passed onto the the architecture connectors
capable of communicating with the selected implementations using
the correct invocation method. The syntax translator performs syn-
tactic transformation of the XML serialization to implementation
native syntax (e.g. binary encoding) or performing additional ac-
tions (e.g. establishing encrypted session, etc..). In this section we
will discuss each layers in more details.

2.1 Semantic Transformation Service

To transform semantically compatible but syntactically different mes-
sage formats we need to able to reason about the structure of the
messages. A typical Grid Service implemented using OGSI[13] or
pure Web Service expresses its message structure through the XML
Schema definition in its WSDL document. By linking Schema ele-
ments to ontology concepts we gain the semantic reasoning ability to
transform messages. Once the compatibility is established, the mes-
sages are transformed using a backward chaining approach. Here we
introduce the mapping and transformation process, for more details
please refer to [6].

Semantic Mapping We take the approach of using a mapping for
establishing the link between an XML Schema element and a On-
tology concept. The mappings for a XML Schema document are ex-
pressed in RDF[4] and stored in RDF’s XML serialization format[5]
in a stand-alone schemaMap file independent of the ontology or the
schema document. A distinct advantage of having separate schema
mapping is that it allows the independent development of schema
and ontology.

To link the XML Schema element with name A and type A-Type
to an OWL class named A-Concept, we represent this link by a RDF
graph. A schemaMap file contains at least one schema-to-ontology
map. Each map has three properties, name, schemaType and seman-
ticType. The property name represents the syntactic name given to
the XML schema entity. schemaType is the XML Schema type given
for the named entity in the XML Schema document. The semantic-
Type points to a URI representing an OWL class or property. We
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envision graphical tools to help users in creating the schema map
files. XML Schema and OWL documents can both be presented in
graphical (trees and graphs) representations, this will allow users to
drag and drop entities from both documents to establish the links
between them.

Transformation After the semantic compatibility is deduced, we use
an algorithm to create the transformation mapping functions[6] be-
tween between schema elements of source and target service. A skele-
ton1 document is generated from the target service’s schema. Apply-
ing the transformation mapping function, a pointer is placed in each
of the value node that refers to the value in the source XML that
needs to be transformed. Once this transformation document is gen-
erated, values are dynamically copied across during transformation.

2.2 Architecture Connector

The architecture connector acts as the bridge between different ser-
vice layers. It is at the end of the transformation pipeline that takes
messages off the request queue and invoke the backend service us-
ing secured socket, command-line integration with legacy systems or
other pluggable means. Apart from being a mere message passing
mechanism, it can also acts upon the message to perform actions,
such as establishing session, file staging and other routines specific
to the application using this framework.

3 A Generic Job Submission Service

The transformation framework (see Figure 1) is instantiated in the
generic job submission service as the adaptation layer between the
Web Service interface and the underlying distributed resource man-
agement systems. The Web Service interface provides a consistent
architecture to submission clients advocated by the Grid commu-
nity. It currently provides submission and monitoring capabilities. It
encapsulates an extensible framework for plugging in architectural
connectors to communicate with a variety of DRM systems. The
connectors are associated with a set of XSD schemas describing the
XML serialization of the DRM job description syntax annotated with

1 A skeleton is an empty xml document conforming to the XML Schema definition
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semantic link to a novel job terms ontology extracted from the JSDL
language. By accepting input job description in a JSDL-like language
also annotated with semantic link to the ontology, the transforma-
tion framework can deduce whether the input job description are
transformable to any of the underlying DRM target language.

The technique has the advantage that new terms can be added
at will without rewriting the generic job submission service. Only
the ontological link needs to be appended or modified, which is
more intuitive then a hard-wired transformation using XSLT or other
declarative transformation language. Moreover, the semantic model
applied to the job description can be used to deduce job description
subsumption for scheduling (e.g. different scheduling policies apply
to different “classes” of jobs) or monitoring purposes.

Fig. 1. Semantic Transfromation Architecture employed in the meta Job Submission
Service
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4 Future Work

The syntax translator needs a set of transformation rules to be pre-
defined in order to perform the transformation from XML to imple-
mentation native syntax. This functionality is necessary due to the
limitation that the transformation service can only automatically
deduce and perform XML to XML transformation. We are currently
investigating the process of XML to native syntax transformation.
This could potentially further simplify our framework by render the
syntax translator redundant.

The transformation framework is developed specifically to solve
the problem of autonomously integrating heterogeneous job submis-
sion architectures with the Web Service interface. We believe the
framework can be generalised to benefit a broader range of Grid Ser-
vices (OGSA), such as resource usage service with diverse account-
ing attributes. Applying the current framework to different types of
Grid Services as use cases, we hope to create a generic Grid Service
transformation framework.

5 Conclusion

In this paper we discussed the difficulty of integrating different job
submission languages and the advantages of using semantic meta-
data. We proposed a way of binding the metadata to the language
schema by using an ontology. A framework is developed to utilise
the ontologically annotated job description documents. These doc-
uments are then transformed dynamically to integrate and select
heterogeneous resource management systems.
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Abstract. In this paper we describe a Semantic Grid application de-
signed to enable museums and indigenous communities in distributed lo-
cations, to collaboratively discuss, describe and annotate digital objects
and documents in museums that originally belonged to or are of cultural
or historical significance to indigenous groups. By extending and refining
an existing application, Vannotea, we enable users on access grid nodes
to collaboratively attach descriptive, rights and tribal care metadata and
annotations to digital images, video or 3D representations. The aim is
to deploy the software within museums to enable the traditional owners
to describe and contextualize museum content in their own words and
from their own perspectives. This sharing and exchange of knowledge
will hopefully revitalize cultures eroded through colonization and glob-
alization and repair and strengthen relationships between museums and
indigenous communities.

1 Introduction

Many museums, archives, libraries and cultural institutions through-
out the world hold large collections of objects that are of cultural or
historical significance to indigenous communities. Because many of
these objects were collected without the consent of the traditional
owners, the custodial organizations are now facing the challenges of
determining ownership, seeking direction from the traditional own-
ers on the future of such objects and repatriating them, storing them
or exhibiting them appropriately as requested. This process is made
more difficult because colonization has caused many indigenous com-
munities to become dispossessed of their lands and widely dispersed
geographically. New collaborative interactive software tools, high-
speed networks and emerging Grid technologies that facilitate com-
munication and the sharing of resources and knowledge between ge-
ographically dispersed groups, appear to offer an infrastructure that



is ideally suited to the implementation of such digital and physical
repatriation programs.

Within this paper we describe the software that we are devel-
oping specifically for such an application, within the Smithsonian’s
National Museum of the American Indian (NMAI). In the United
States, the Native American Graves Protection and Repatriation Act
(NAGPRA) specifies the types of objects and sites to be protected
and/or repatriated. Going beyond the requirements of NAGPRA,
the NMAI has established a Culturally Sensitive Collections Care
Program to respond to areas of concern of Native peoples with re-
gard to the maintenance, presentation, and disposition of sensitive
materials and information in the collections of the museum. Past
experience has indicated that many tribal communities want access
to the records of all objects in museum collections associated with
their community and that after reviewing these, some will be sat-
isfied with digital surrogates and access to physical objects when
requested. The objective of the application described here is to pro-
vide the cyber-infrastructure to support such a program.

Within the FilmEd project [1], we developed the Vannotea sys-
tem to collaboratively index, annotate and discuss digital film and
video (MPEG-2) over high bandwidth networks. Vannotea has been
extended to support the sharing, indexing and annotation of high-
quality images (JPEG2000) and 3D objects (Direct 3D). Within the
Indigenous Knowledge Management (IKM) project [2], we developed
software tools to enable non-collaborative indexing, annotation and
rights management of indigenous collections. In this paper we ex-
plain how we have amalgamated software developed within these
two projects to produce a system that enables collaborative index-
ing, discussion, annotation and rights management of indigenous col-
lections via access grid nodes. We have done this by extending the
Vannotea software through the addition of:

– Fine-grained rights management components specifically required
for Indigenous Knowledge;

– Support for the sharing, indexing and annotation of 3D digital
objects.

The remainder of this paper is structured as follows. The next sec-
tion describes related work and the background and objectives to
the work described here. Section 3 describes the architectural de-
sign of the system and the motivation for design decisions that were
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made. Section 4 describes the issues involved in integrating Indige-
nous knowledge management requirements and adding support for
3D objects, respectively. Section 5 provides the conclusion and de-
scribes plans for future work.

2 Related Work and Objectives

Developing a system to collaboratively index, annotate and discuss
high quality images, videos and 3-D objects within the context of
indigenous collections involves research across a range of disciplines:

– Multimedia indexing, search and retrieval;
– Annotation tools for digital multimedia documents;
– Collaborative application sharing and document sharing tools;
– Authentication, authorization and digital rights management for

Indigenous collections.

In the next four sub-sections we describe relevant, related work in
these areas.

2.1 Multimedia Indexing, Search and Retrieval

There has been considerable work on the indexing, searching and
retrieval of images and video content. Many automatic tools have
been developed to extract low level features [3-6] and various sophis-
ticated content-based retrieval methods have been developed (e.g.
Query-by-Example, Sketching interfaces, etc.) [7-9]. A number of
tools have also been developed to enable semantic descriptions to
be manually attached to video [10-13] and image [14, 15] content
using free text, controlled vocabularies or ontologies. Other research
groups are attempting to ”bridge the semantic gap” [3, 16, 17] by au-
tomatically generating semantic descriptions using machine-learning
techniques.

Although the majority of multimedia indexing, search and re-
trieval systems target images and video, Rowe et. al [18] recently
created a tool to capture, model, analyze, and query complex 3D
data within an archeological museum context. Their focus was on
feature extraction of 3D objects rather than on user annotations
and only asynchronous, non- collaborative user access is provided.
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None of the work carried out to date allows distributed groups to
index and define the access rights policies associated with multime-
dia (images, video and 3D) objects collaboratively. Decision making
within many indigenous groups is a group process, carried out by a
council of elders. When describing cultural or historical objects and
defining access rights, it’s important that geographically dispersed
community leaders can do this in collaboration with museum staff
through real-time group discussions that will generate a legitimate
consensus for future generations.

2.2 Annotating Digital Multimedia Documents

Existing annotation tools (which enable users to attach personal
notes, questions, explanations, etc. to documents) can be categorized
according to the media types which can be annotated (text, web
pages, images, audio or video, 3D) and the extent of collaboration
supported. This matrix in Table 1, gives an overview of the different
products, tools, systems and projects according to these categories.

Non-Collaborative Collaborative
private annotations shared annotations logged, live discussions

(assynchronous) (synchronous)
Text or text processors like MS Annotea [19], Churchill et al. [21],
webpages Word, Adobe Acrobat, etc. Cadiz et al. [20] Collaborative

Information Browser [22]
Image Adobe PhotoShop, PAIS [23], Photo Annotator mimio classroom [25]

QTVR (Annotea + SVG) [24]
Audio/Video MRAS [26] DTVI [27]
3D Jung et al. [28]

Table 1. Annotation Tools

Microsoft’s Distributed Tutored Video Instruction (DTVI) [27] is
the only system that enables students to replay and discuss videos
of lectures collaboratively. However it does not support real-time
synchronous annotations. It is based on a combination of Windows
Media Player and Microsoft’s NetMeeting [29], which uses the T.120
protocol [30] for application sharing.

The approach adopted by application sharing protocols such as
T.120 (NetMeeting) or VNC-Protocol [31] makes them unsuitable
for our application. In such protocols, the shared application runs
on a master client or server, which receives the keyboard and mouse
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events from the participants and sends captured screen/window up-
dates back to the participants. Although this framework could po-
tentially be used to transfer high frame rates of MPEG-2 video -
with sufficient bandwidth and computing power - it clearly trades
efficiency for generality.The protocols are also restrictive in terms
of the collaborative environment, e.g. multiple users with multiple
simultaneous cursors are not supported. Therefore we have had to
build a collaborative environment from scratch, using .NET Remot-
ing. This is described in detail in Section 4.4.

2.3 Indigenous Rights Management

One of the challenges that museums face when managing Indigenous
collections is providing support for traditional laws related to the
protection and preservation of sacred or secret resources. Attributes
including a user’s gender, tribal affiliation and status within the tribe
are examples of the fine-grained access control required by organisa-
tions such as the National Museum for the American Indian (NMAI).
Physical artefacts (such as those stored at the NMAI) also have spe-
cial storage, orientation or preservation needs - known as tribal care
constraints. Within the Indigenous Knowledge Management (IKM)
project [2, 32] tools have been developed to enable traditional own-
ers to define the specific rights requirements associated with digital
objects and to match them against user profiles to control access. A
number of other projects [33-35] have been developing software to
support the management of indigenous multimedia collections but
none provide the same level of granularity, flexibility, scalability and
interoperability or are designed for real-time collaborative use.

Figure 1 shows the rights definition interface which is generated
from backend XML Schema files which define the metadata schemes.
A graphical user interface is also provided so users can customize
the schema files to suit their particular community’s descriptive and
rights metadata requirements. A keyword web-based search interface
is also provided so users may search, browse and retrieve resources
that they are permitted to access. Our objective is to incorporate
the fine-grained rights management components of the IKM soft-
ware within the metadata schemas and search interface of the Van-
notea system, essentially to enable the IKM software to be used by
distributed groups of users, collaborating in real-time.
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Fig. 1. Rights definitions using Indigenous Knowledge Management Software

3 System Architecture and Components

Figure 2 illustrates a hypothetical usage scenario of the Vannotea
system - a live discussion between museum curators and traditional
owners, communicating with each other using Access Grid Nodes
and the Vannotea system over the GrangeNet broadband network.

The architecture also reflects the assumption of two separate
metadata stores:

– One (or more) databases for the search and retrieval of multime-
dia content based on objective metadata about the multimedia
content. These databases are typically maintained by the custo-
dial organization (museum or archive) or owner of the content.

– A separate metadata store that logs the shared personal annota-
tions.

Figure 2 also illustrates the four major components of the system
which are described in more detail below: User Interface; Indexing,
Search and Retrieval; Annotation and Discussion Server; Collabora-
tive Environment.

3.1 User Interface

Figure 3 shows the three different components of the user interface.
The Content Description component enables the objective and au-
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Fig. 2. System Architecture

thorized segmentation and indexing of the content, as well as search,
browsing and retrieval.

In order to streamline the indexing and segmentation process of
video content the Mediaware SDK [36] is used to perform automatic
shot- detection. The resulting shot-list is used for further hierar-
chical segmentation of shots to frames or aggregation of shots to
higher-level segments (scenes). This hierarchical temporal structur-
ing enables easy navigation and browsing through the video. The
entire multimedia object, selected segments, or individual frames,
can be described either by entering free text values or using con-
trolled vocabulary/terms available through pull-down menus.

Different Content Viewers/Players were required to support the
different high quality media formats: MPEG-2 for videos, JPEG2000
for images and Direct3D for mesh files. Microsoft Direct3D was cho-
sen for its generic mesh file format and native C# API. Direct3D
mesh files describe the model as a series of interconnected polygons.
Utilities such as AccuTrans 3D [37] can convert a variety of popular
3D languages, including VRML, into this format.
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Fig. 3. The three key components of the UI

The controls of each Content Viewer/Player vary depending on
the format of the currently shared object. The Video Player features
common video playback functionalities (play, pause, seek, stop). The
Image Viewer provides tools such as panning, zooming and tilting
and the 3D Object Viewer (Figure 4) provides controls to zoom, pan
and rotate or change the current view.

Fig. 4. 3D Object Viewer

Users can attach annotations to selected regions within images,
selected segments, frames or frame regions within videos, or areas
within 3D objects. For 2D this is done through drawing simple shapes
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(line, rectangle, ellipse) on top of the image or frame. The frame num-
ber (for video), shape and the coordinates are then stored as context
fields the annotation refers to. For 3D objects, annotations can be
attached to a specific polygon or group of polygons in the mesh. A
3D technique called picking is used to identify a polygon based on
a mouse click. Once annotated, the polygon(s) is/are highlighted to
visually inform users that an annotation exists on that surface re-
gion of the model. Currently annotations can be either plain text
or a URL. Within the Annotation & Discussion window, we not
only list the annotations (details of who and when) for a multimedia
document, but also provide a search and browsing interface. Conse-
quently, users can not only retrieve content based on the custodial
metadata, but also based on the community annotations.

3.2 Indexing & Search and Retrieval Database

A key objective of the system was to provide simplicity and flexibil-
ity for users in their choice of metadata descriptions, whilst still sup-
porting standards, interoperability and different media types. This
required a design which could easily adapt to the different applica-
tion profiles required by different communities.

We did this by providing a tool which enables users to define
and edit XML Description Templates - simplified versions of XML
Schemas. The templates are directly mapped to the UI for entering
the metadata (Figure 5). This flexible description architecture al-
lows fast and easy customization of the system to support different
indigenous community needs, as well as different media formats.

The actual metadata for each media file is represented as a De-
scription DOM (Document Object Model) similar to the structure
of the template, which makes it simple to transform to different
standards like Dublin Core [38] and MPEG-7 [39, 40] or the IKM
metadata format using XSL-Stylesheets. The metadata is stored in a
Tamino native XML database and XQuery used to query the repos-
itory. However, the flexible description architecture and search and
retrieval interface allows the integration of third party web-based
search and retrieval tools such as provided by the IKM project de-
scribed in Section 2.3.
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Fig. 5. A metadata capture form generated from a Description Template

3.3 Annotation Server

The annotation database stores the annotations (which may be as-
sociated with regions of 2D images or 3D objects, video segments,
keyframes, or regions within frames), as well as the source of the an-
notations (who, when, where). Currently either textual or hyperlink
annotations are possible. We based the annotation component of our
software on Annotea [19], an open source system developed by the
W3C which enables shared RDF annotations to be attached to any
Web document or a part of the document. We extended Annotea
to support the annotation of other media types, such as audiovisual
content or 3D objects through spatio-temporal fragment identifiers
generated by extending URI’s. For the annotation of regions on 3D
objects we used unique polygon IDs. Although this was the simplest
approach, it may be problematic when the regions do not exactly
match polygon boundaries.

Use of Annotea also allowed us to test prototypical annotation
server implementations such as Zope [41] or the W3C Perllib [42]
server. We experienced problems with current implementations of
Annotea servers which also don’t support fine-grained access control
to annotations based on user profiles. Therefore we are currently im-
plementing our own annotation server based on the same principles
but with more flexibility enabling us to satisfy our needs.
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The flexible architecture of Annotea will also allow us to easily
attach and store audiovisual annotations - small audio or video clips
captured during the video conferencing discussion. However the cur-
rent access grid node videoconferencing tools (vic and rat) prevent
easy capture and synchronization of audio and video streams. Re-
searchers from the ANU’s Internet Futures Program are currently
working on alternative videoconferencing tools [43] which will sup-
port easy capture of audiovisual streams from AGN sessions.

3.4 Collaborative Environment

Because Vannotea is implemented in C# within the .NET develop-
ment framework, the most flexible, modular and integrated approach
to application sharing was to develop it using .NET Remoting. .NET
Remoting provides a framework that allows objects to interact with
each other across application domains or on different servers through
events. Figure 6 illustrates the event-handling architecture of our
application. In this example, the client-master is in control of the
application, the remote clients are joining the session by connecting
to the same server-application.

Fig. 6. Event handling using .NET Remoting

The Mediator objects handle the communication between the
clients and the server. They can call methods on the remote ob-
ject (Coordinator). In return, the Coordinator can call methods on
the Mediator by raising events that the Mediator has subscribed and
listens to. To achieve a form of collaboration, selected events are sim-
ulated on all clients. Even mouse movement events can be handled
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in this way, resulting in several colour-coded mouse pointers within
one application that can all be in control simultaneously.

The MPEG-2 videos are streamed using multicast over VideoLan
[44]. VideoLan is controlled by the application server to ensure all
clients are watching precisely the same content at the same time.
Collaborative viewing of 3D objects can be implemented by:

– Either transferring the whole file and rendering it at the client.
This is easier to implement; thin server; each client can have a
different view. The major disadvantage is that computationally
expensive rendering must be performed by each client.

– Or rendering it on the server and streaming the rendered result
to each client. This is more efficient because rendering of complex
3D objects is computationally expensive. But it is more difficult
to implement and to ensure that each client sees the same view.

One objective of the project is to evaluate users’ behavior and
obtain user feedback on the different levels of collaboration avail-
able during the image / video / 3D object analysis and discussion
and annotation processes. We may want to restrict access to shared
application controls based on user profiles. Access management of
content during collaborative sessions also presents a difficult prob-
lem. Participants may have different access rights to content, that
will be shared during a collaborative session. If a user chooses to
open a new multimedia object, the access rights of each user must
be compared with the access rights of the object. If one or more
participants are not allowed to see the object, the initiating partic-
ipant is warned and must choose if the object should be opened or
if restricted participants should be excluded from the collaborative
session.

4 Future Work and Conclusions

In this paper we have described a system which combines high-
speed networks, access grid nodes and collaborative document- and
application- sharing software to facilitate the communication and
exchange of knowledge between dispersed indigenous communities
and museum staff. The aim is to deploy and test the software in col-
laborative projects between museums, archives and indigenous com-
munities, to facilitate cultural repatriation programs. We are cur-
rently discussing a collaborative project between the Smithsonian
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National Museum of the American Indian (NMAI), the American
Indian Higher Education Consortium (AIHEC) Tribal Colleges and
American Indian communities which will use this system to facilitate
the implementation of the NMAI’s Culturally Sensitive Collections
Care Program. It will provide a means for Native people to express
and document their concerns with regard to the maintenance, pre-
sentation, disposition and repatriation of sensitive materials and in-
formation in the museum’s collections.

In the immediate future we plan to complete the integration of
the IKM software within the Vannotea system and carry out further
testing, evaluation and usability studies using real groups commu-
nicating via access grid nodes. We also intend to investigate the
following:

– Audiovisual annotations - capture of video/audio streams from
access grid node sessions;

– Rights management of annotations;
– The use of Shibboleth and OpenSAML to implement user au-

thentication and access controls;
– More intuitive search and browse interfaces, e.g. GIS/map inter-

faces.
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Abstract. This paper presents an overview of the changing landscape
of scholarly communication and describes outcomes from the innovative
eBank UK project, which seeks to build links from e-research through
to e-learning. As introduction, the scholarly knowledge cycle is described
and the role of digital repositories and aggregator services in linking data-
sets from Grid-enabled projects to e-prints through to peer-reviewed ar-
ticles as resources in portals and Learning Management Systems, are
assessed. The development outcomes from the eBank UK project are pre-
sented including the distributed information architecture, requirements
for common ontologies, data models, metadata schema, open linking
technologies, provenance and workflows. Some emerging challenges for
the future are presented in conclusion.

1 Introduction and context the scholarly knowledge cycle

The eBank project is predicated on the concept that research and
learning processes are cyclical in nature, and that subsequent out-
puts which contribute to knowledge, are based on the continuous use
and reuse of data and information [1]. We can start by examining
the creation of original data, (which may be, for example, numer-
ical data generated by an experiment or a survey, or alternatively
images captured as part of a clinical study). This initial process is
usually followed by one or more additional processes which might in-
clude aggregation of experimental data, selection of a particular data
subset, repetition of a laboratory experiment, statistical analysis or
modelling of a set of data, manipulation of a molecular structure,
annotation of a diagram or editing of a digital image, and which in
turn generate modified datasets. This newly-derived data is related
to the original data and can be re-purposed through publication
in a database, in a pre-print or in a peer-reviewed article. These



secondary items may themselves be reused through a citation in a
related paper, by a reference in a reading list or as an element within
modular materials which form part of an undergraduate or postgrad-
uate course. Clearly it will not always be appropriate to re-purpose
the original data from an experiment or study, but it is evident that
much research activity is derivative in nature.

The impact of Grid technologies and the huge amounts of data
generated by Grid-enabled applications, suggest that in the future,
(e-)science will be increasingly data-intensive and collaborative. This
is exemplified in the biosciences where the growing outputs from
genome sequencing work are stored in databases such as GenBank
but require advanced computing tools for data mining and analy-
sis. The UK Biotechnology and Biological Sciences Research Coun-
cil (BBSRC) recently published a Ten Year Vision which describes
this trend as ”Towards predictive biology” and proposes that in the
21st Century, biology is becoming a more data-rich and quantitative
science. The trend has clear implications for data/information man-
agement and curation procedures, and we can examine these further
by returning to the concept of a scholarly knowledge cycle, figure 1.

A complete cycle may be implemented in either direction so for
example, discrete research data could (ultimately) be explicitly ref-
erenced in some form of electronic learning and teaching materials.
Alternatively, a student might wish to ”rollback” to the original re-
search data from a secondary information resource such as a pub-
lished article or from an element within an online course delivered via
a Learning Management System. In order to achieve this, a number
of assumptions must be made which relate largely to the discovery
process but are also closely linked to the requirement for essential
data curation procedures. The assumptions are:

– The integrity of the original data is maintained
– There is a shared understanding of the concept of provenance
– The original dataset is adequately described using a metadata

description framework based on agreed standards
– A common ontology for the domain is understood
– Each dataset and derived data and information are uniquely iden-

tified (fig. 2)
– Open linking technology is applied to the original dataset and

the derived data and information
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Fig. 1. Illustration of the scholarly knowledge cycle for research and teaching

In addition to the Grid computing context, these requirements
relate directly to the vision of the Semantic Web, and Semantic Web
technologies can be used to express the necessary relationships be-
tween objects. The application of Semantic Web technologies within
the e-Science and Grid computing context places thiss research in
the arena of the Semantic Grid [2].

2 The eBank UK Project - outcomes to date

The eBank UK project is addressing this challenge by investigat-
ing the role of aggregator services in linking data-sets from Grid-
enabled projects to open data archives contained in digital reposi-
tories through to peer-reviewed articles as resources in portals. This
innovative JISC-funded project which is led by UKOLN in part-
nership with the Universities of Southampton and Manchester, is
seeking to build the links between e-research data, scholarly com-
munication and other on-line sources. It is working in the chemistry
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domain with the EPSRC funded eScience testbed CombeChem [3],
which is a pilot project that seeks to apply the Grid philosophy to
integrate existing structure and property data sources into an infor-
mation and knowledge environment.

The specific examplar chosen from this subject area is that of
crystallography as it has a strict workflow and produces data that is
rigidly formatted to an internationally accepted standard. The EP-
SRC National Crystallography Service (NCS) is housed in the School
of Chemistry, University of Southampton, and is an ideal case study
due to its high sample throughput, state of the art instrumentation,
expert personnel and profile in the academic chemistry community.
Moreover, recent advances in crystallographic technology and com-
putational resources have caused an explosion of crystallographic
data, as shown by the recent exponential growth of the Crystal Struc-
ture Database (CSD) see Cambridge Crystallographic Data Centre.
However, despite this rise it is commonly recognized that approx-
imately only 20reaching the public domain. This situation is even
worse in the high throughput NCS scenario where approximately
15disseminated, despite producing ¿60 peer reviewed journal articles
per annum. With the imminent advent of the eScience environment,
this problem can only get more severe.

A schema for the crystallographic experiment has been devised
that details crystallographic metadata items and is built on a generic
schema for scientific experiments, figure 2. During the deposition
of data in a Crystallographic EPrint metadata items are seamlessly
extracted and indexed for searching at the local archive level. The top
level document includes ’Dublin Core bibliographic’ and ’chemical
identifier’ metadata elements in an Open Archives Initiative Protocol
for Metadata Harvesting (OAI-PMH) compliant form, which allow
access to a secondary level of searchable crystallographic metadata
items, which are in turn directly linked to the associated archived
data. In this manner the output from a crystallographic experiment
may be disseminated as ’data’ in such a way that aggregator services
and researchers may add value to it and transform it into knowledge
and the publication ’bottleneck’ problem can be addressed.

The metadata about datasets made available in the repository
will be harvested into a central database using the OAI-PMH. This
metadata will then be indexed together with any other available
metadata about research publications. A searchable interface will
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enable users to discover datasets as well as related literature. The
metadata contains links back to the datasets which the user will be
able to follow in order to obtain access to the original data, when this
is available. Harvested metadata from different repositories not only
provides a common entry point to potentially disparate resources
(such as datasets in dataset repositories and published literature
which may reside elsewhere) but also offers the potential of enhance-
ment of the metadata such as the addition of subject keywords to
research datasets based on the knowledge of subject classification
terms assigned to related publications. A further area of work inves-
tigates the embedding of the search interface within web sites, adopt-
ing their look-and-feel. PSIgate (http://www.psigate.ac.uk/) will be
used to pilot these embedding techniques based on CGI-mechanisms
and portal-related standards.

The concept we have implemented within the Southampton e-
print archive system is Data Publication@Source [4]. Crystallographic
EPrints use the OAI concept to make available ALL the data gen-
erated during the course of a structure determination experiment.
That is the publishable output is constructed from all the raw, re-
sults and derived data that is generated during the course of the
experiment. This presents the data in a searchable and hierarchical
system that relates to the workflow of the experiment. This meta-
data includes bibliographic and chemical identifier items which are
above a secondary level of searchable crystallographic items which
are directly linked to the associated archived data. The table below
depicts the schema and shows the hierarchical manner in which the
open archive report is constructed in the figure below.

Hence the results of a crystal structure determination may be dis-
seminated in a manner that anyone wishing to utilise the information
may access the entire archive of data related to it and assess its va-
lidity and worth. In the future a notification, or bulletin board type
system, (much like Amazons reviewers comments) could be added
to create in effect a new type of peer reviewed publication.

3 Conclusions - issues and challenges for the future

While only test versions of the e-crystal-data-report have been pro-
duced so far they have been populated with real crystallographic
data sets produced at the National Crystallography Service (NCS).
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Name Files associated with this stage Metadata associated with this stage
File Type Description Name Data Type

Initialisation .htm HTML Metadata for crystallography expt Morphology *STRING (SET)
i*.kcd BINARY Unit cell determination images Solvent *STRING

Unit cell Sample image .JPG
Collection s*.kcd BINARY Diffraction images Instrument Type *STRING

*scan*.jpg JPG Visual version of .kcd file Temperature *INTEGER
Crystal image .JPG
Software Name STRING
Software Version INTEGER

Processing scale all.in ASCII Result of processing Cell a *NUMBER
scale all.out ASCII Result of correction on processed data Cell b *NUMBER
.hkl ASCII Derived data set Cell c *NUMBER
.htm HTML Report file Cell alpha *NUMBER

Cell beta *NUMBER
Cell gamma *NUMBER
Crystal system *STRING (SET)
Completeness *INTEGER (%)
Software Name STRING
Software Version INTEGER

Solution .prp ASCII Symmetry file, log of process Space group *STRING (SET)
xs.lst ASCII Solution log file Figure of merit *NUMBER

Software Name STRING
Software Version INTEGER

Refinement xl.lst ASCII Final refinement listing R1 obs *NUMBER
.res ASCII Output coordinates wR2 obs *NUMBER

R1 all *NUMBER
wR2 all *NUMBER
Software Name STRING
Software Version INTEGER

CIF .cif ASCII Final results Formula moiety *STRING
checkcif.htm HTML Automatic validation results CIF check *STRING

Report .html .HTML Publication format EPrint type *CRYSTAL
(HTML/XHTML) STRUCTURE

Authors *STRING
Affiliations *STRING
Formula empirical *STRING
Compound name *STRING
CCDC Code *STRING
Compound class *STRING (SET)
Keywords *STRING (SET)
Available data *STRING (SET)
Related publications STRING

Fig. 2. The draft version of the schema details for the crystallographic data show-
ing the main data types and associated file names generated in a crystal structure
determination.

The lessons learnt so far fall in to three main areas. First, the ease of
use in inputting the data to the system and ensuring that sufficient
information about the materials, the experiment and the nature of
the data is being entered. Some of the input styling is taken over
directly from the current e-print system which of course allows for
files of different types to be up loaded. However the issue of file types
becomes more complex with the advent of data. In this regard the
conformity of the crystallography community is an advantage, with
common file types with well-understood extensions. Never the less
some standardization is imposed following the NCS practice at this
stage. Conversion between different file types for the higher-level
data elements (e.g. the molecular structure files) can be done au-
tomatically, with a high degree of fidelity, and this is necessary to
provide suitable data for the visualization programs built in to the
viewing interface.
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Fig. 3. A summary of the different screens available from the basic e-data report show-
ing how the data and metadata described in the basic schema of figure 2 are displayed.

This brings us on to the second main area, the viewing of this in-
formation directly from the e-print system. Once an entry is located
then the information is presented on a web interface with the major
details about the molecule available, including a visual, rotateable
image. The conversion of the crystallographic CIF file to other for-
mats (e.g. MOL file) is necessary for this. Similarly the newly define
unique chemical identifier (INCHI) is also calculated by converting
the CIF file via these stages to a CML file. The required conversions
are implemented (or soon will be) as web services to allow updates
independently of the main e-print software system.

The final issues revolve around finding the existence of the data on
the e-print system. As indicated above the data schema that provides
the outline for the arrangement of the data highlights the significant
data that a chemist would wish to search on. This is made avail-
able via an OIA interface to harvesting programs, which can then
provide additional functionality to enable a multi-parameter search.
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This side of the system is less tested and does present some prob-
lems for us as many of the current search systems allow for searches
on chemical structures (drawn in 2 or 3D) using proprietary algo-
rithms, especially for the sub-structure search. We are thus not able
to implement this type of search but can demonstrate that the data
needed for such searches can be made available to data aggregators.

The test experiments have proved very successful and have en-
gaged the interest of several of the traditional suppliers of crystal-
lographic information, who wish in effect to move up market in the
information supply chain. In the academic community there is a
growing word wide interest. The system of separating the archiving
of the data, including all the raw and background information, from
the aggregated higher level structural data which is to be curated
over a much longer term, looks to be very successful.

We should stress that the e-experiment-data-reports are not re-
stricted to crystallographic data. These data sets were chosen as an
ideal test case due to their relative uniformity, community agreement
and availability of diagnostics to enable the user to assess the quality
of the data. We are now extending the system to cover spectroscopic
data, for which again the issue of the lack of extensive libraries of
even common molecules is a major hindrance to efficient research.
We are applying the principle to Raman spectra are working with
one of the spectrometer supplies from the start to ensure that the
links to the e-print system can be built in to the spectrometer soft-
ware, further simplifying the task of disseminating the data.

One aspect that may need further consideration if the automated
processes are enhanced, is finer control over access to the data by
different groups at different times. This will of course overlap with
security concerns.
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Abstract. There have been a number of e-Science projects which ad-
dress the issues of collaboration within and between scientific communi-
ties. Most effort to date focussed on the building of the Grid infrastruc-
ture to enable the sharing of huge volume of computational and data re-
sources. The “portal” approach has been used by some to bring the power
of grid computing to the desk top of individual researchers. However, col-
laborative activities within a scientific community are not only confined
to the sharing of data or computational intensive resources. There are
other forms of sharing which can be better supported by other forms of
architecture. In order to provide a more holistic support to a scientific
community, this paper proposes a hybrid architecture, which integrates
Grid and peer-to-peer technologies using Service Oriented Architecture.
This platform will then be used for a semantic architecture which cap-
tures characteristics of the data, functional and process requirements
for a range of collaborative activities. A combustion chemistry research
community is being used as a case study.

1 Introduction

Research on infrastructure to support scientific collaboration has at-
tracted the attention of many institutions and organisations world-
wide. The UK e-Science programme and its research centres are
amongst the most active participants[1]. E-Science projects, such
as myGrid[2] or DAME[3], have mainly focused on developing mid-
dleware to support scientific collaboration commonly known as the
Grid. The main purpose of the Grid is for coordinated resource shar-
ing and problem solving in dynamic, multi-institutional virtual or-
ganisations [4]. Grid developer community recently has adopted a
Service Oriented Architecture, OGSA[5], to enhance the interoper-
ability of services on the Grid and the flexibility when using the ser-
vices. However, the challenge is how to bring the benefits of the Grid
to the wider scientific communities (i.e. those which may need the
power of the Grid only occasionally). The current portal approach



provides a gateway to the Grid power from a desktop machine, e.g.
in [3], but its support for interactive collaboration amongst end users
is rather limited.

Peer-to-peer, on the other hand, is a computing model, which
has a more lightweight approach to the sharing of computing re-
sources. This model has been proved to be successful in many com-
mercial desktop file-sharing applications such as Napster1 and cur-
rently Kazza2. The advantage of peer-to-peer is that its application
is closer to end users, and when using the system, they have the
sense of ownership over their shared resources. In addition, a peer-
to-peer application often provides online means of communication to
support collaborative work, therefore, not only computing resources
but also scientific knowledge could be shared. It is anticipated that
the world of scientific computing will be more and more decentralised
into peer-to-peer model, where scientists’ desktops will be edges of
the network[6].

In the effort to improve the support for scientific collaboration,
an integrated architecture combining the Grid and peer-to-peer con-
cepts is proposed. The goal of this integration is to bring resources on
the Grid more widely available to the whole scientific community. In
order to increase automation and quality of collaboration within the
new architecture, the use of Semantic Web technology is planned.

The domain of experimentation for this study comes from the
Combustion Chemistry Research Community. Requirements capture
has been an on-going activity. The next section of this paper will pro-
vide the background of collaborative requirements within the Com-
bustion Chemistry Research Community. The proposed hybrid archi-
tecture will be presented in the third section. The potential offered
by the Semantic Web technology and its challenges will be assessed.

2 Context: The Combustion Chemistry Research
Community

The centre of Combustion Chemistry research is building models of
chemical reactions. This activity is time-consuming and requires ex-
pert knowledge. However, because the input data necessary for the
building process, experimental data and reaction rate coefficients, is

1 Napster has been put out of service
2 http://www.kazza.com
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scattered around in the community and improperly evaluated, the
model builders do not have access to all of these data, and hence,
the accuracy of resulted models are limited to only particular condi-
tions. Consequently, subsequent combustion processes that use these
models are also limited to certain level of accuracy. In order to over-
come these shortcomings and to get model users involved in building
process, the combustion chemistry community is looking for a com-
puting infrastructure, which has:

– A storage for storing knowledge relevant to compiling reaction
models, such as experiment data, as well as reaction models.

– A collection of tools for enabling scientific collaboration amongst
all distributed participants and tools for enabling processing,
analysis and validation of data as well as assembly the data into
models.

The ultimate goal of the Combustion Chemistry Research Com-
munity is a paradigm that enables building reaction models in a
consistent and systematic way by incorporating all available data
and expertise of all members of the community.
(The problems and requirements above identified by chemists in[7],
[8] & [9])

3 The Integration of Peer-to-peer and the Grid

Integration between Grid and peer-to-peer has been considered in
Peer-to-peer Grids[10], which mixes Grid and peer-to-peer concepts
into a democratic architecture mediated by Web Services. This pa-
per proposes a different way of integrating the Grid and peer-to-peer,
which attaches peer-to-peer and the Grid together (Fig. 1) so that
they can mutually support each other. This method of integration
reduces the cost of implementation and management while still main-
taining flexibility as characteristics of the Grid and of peer-to-peer
will remain the same.

As shown in Fig. 1, the integrated architecture separates heavy
computation and storage into the Grid side, named computation
layer, and lightweight collaboration into peer-to-peer side, named
collaboration layer. For example, in the context of Combustion Chem-
istry research, heavy computation can be simulations of reaction
mechanism; sharing of experimental data and mechanisms amongst
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Fig. 1. The integration of Peer-to-peer and the Grid

scientists are lightweight collaboration. The two layers can be con-
nected by either Web or Grid Services that depends on the choice of
implementation.

Information about resource on the traditional Grid such as ex-
perimental data, simulation programs, is only known and accessible
to authorised users. However, research communities are widely dis-
tributed, and not all members are granted access to Grid. Therefore,
there might be a situation in which some scientists are desperate for
resource, whereas the resource is readily available on the Grid with
minimal use. The proposed integration is addressing this problem
in the following way: (i) resources on the Grid are transformed into
Web (Grid) services; (ii) the owners of these services publish service
advertisements into their peer-to-peer communities; (iii) on receiv-
ing information about necessary services, scientists, who do not have
access to Grid, can request service owners to execute the services on
their behalf. In this model, the role of resource owners is to bridge
the need of peer-to-peer communities and resources on the Grid.
This role will be automated and can be extended to authorised Grid
users, who are also members of peer-to-peer communities.
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In addition to the above advantage, the separation of compu-
tation to the Grid and lightweight collaboration into peer-to-peer
also reduces the management complexity of trivial collaboration on
the Grid. Other features of peer-to-peer computing such as instant
messaging, file sharing also add great values to the integrated archi-
tecture in supporting scientific collaboration.

4 Potential Application of the Semantic Web

The above section has described in principle the interaction of Grid
and peer-to-peer in the collaborative architecture. A semantic ar-
chitecture would also be necessary to bring the architecture to its
full potential as well as to satisfy strict requirements of modern sci-
entific communities. For instance, Combustion Chemistry Research
Community requires of higher level of automation in building chem-
ical mechanism and locating validated source of scientific data. In
order to achieve this, characteristics of scientific collaborative pro-
cesses and data need to be captured and categorised in a proper
format that is understandable to computer programs. This requires
the use of ontology from the Semantic Web technology. One exam-
ple from the architecture, the discovery of available services on the
Grid in peer-to-peer environment will clearly benefit from the use of
ontology.

The use of ontology in a decentralised peer-to-peer environment
leads to a challenging problem. As ontology is a means of captur-
ing scientific knowledge and knowledge in a scientific community
evolves overtime, it will not be feasible to have only a common static
ontology for a community. Ontology building has to be a continu-
ous process. It will also not appropriate for some people to develop
the ontology, and the other people using it. The one who uses the
ontology is the one who has most knowledge of it, then that one
should contribute to development of the ontology. In addition, with
one piece of ontology, communities from different backgrounds may
understand differently. Therefore, ontologies should be local to com-
munities that it is built to support.

For all the above reasons, this paper is proposing an approach
to be used within the integrated architecture, in which ontology
within a community will be used and contributed by its members.
In order to achieve this, the peer-to-peer environment will be or-
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ganised as communities and sub-communities. Each community or
sub-community will promote a leader or a chairperson, who leads the
community, and agree on a common ontology to be used. A member
of a community can make change to the ontology of the commu-
nity by advertising definition of new terms and concepts to all other
members of that community. Other members will give feedback if
appropriate. When all the agreements are made on the new ontol-
ogy, the chairperson will make the change official to the community
and notify other members about the decision.

5 Conclusion and Work to Be Done

This paper has introduced an integrated architecture between Grid
and peer-to-peer to support scientific collaboration, focusing more on
the collaboration aspect with the aim to bring large-scale resources
a step closer to end scientist users. The use and the management
of ontologies have also been considered to exploit full potential of
the collaboration within and amongst communities in peer-to-peer
environment.

A prototype implementation of the integration in the context of
Combustion Chemistry Research Community without ontology has
been developed and proved to be successful. This implementation
is using Grid Services from Globus Toolkit 3[11] and JXTA[12] on
Grid and peer-to-peer side respectively. The concept Peer Group and
messaging mechanism of JXTA seems to match well with the inte-
grated architecture. The next implementation will be incorporating
ontology into collaboration layer to support resource discovery, fo-
cusing particularly on discovering services, and managing ontologies
within communities. This implementation promises to bring a novel
architecture into reality.
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Abstract. This paper describes a methodology to specify machine-processable
semantic descriptions of computational components to enable them to be
shared and reused. A particular focus of this scheme is to enable auto-
matic composition of such components into simple workflows.

1 Introduction

Part of the vision of the Semantic Grid is to enable “an infrastruc-
ture where all resources, including services, are adequately described
in a form that is machine-processable”[1]. This paper describes a
methodology to specify machine-processable semantic descriptions
of computational components.

The focus of the CRADLE project is to represent the semantics
of workflow components, or so called “tools,” with the ideal goal of
enabling automatic generation of semantically correct workflows. A
prototype of CRADLE has been implemented including a repository
for tool descriptions, a plan (or workflow) generation program and
a prototype plan execution system. While the focus of CRADLE is
on tools, we think that similar techniques apply to data collections
and web/grid services.

In general, a tool is a program, component or service that com-
putes one or more outputs from one or more inputs. Some tools
require significant computation such as a simulation that computes
a flow field around some object or one that computes thermody-
namic properties given a flow. However, tools also include format
translators, data extraction functions, data analysis and visualiza-
tion programs.
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In order to manage the growing number of these tools and to
share them, it is desirable to put tool descriptions in web-accessible,
searchable repositories. Associated with each tool would be informa-
tion about what it does, how to run it, who created it, its properties
and so on.

The main focus of our research is to find ways to express the
semantics of a tool in a machine-readable way. Semantic tool de-
scriptions could be used to narrow the set of tools that a user must
select from to solve a particular problem. Further, we are interested
in plans, collections of interconnected tools, and how to use semantic
descriptions to ensure the well-formedness of a plan and to determine
its semantics. Plans are a kind of workflow that have been restricted
to DAGs (directed acyclic graphs).

Our goal is to facilitate plan generation, which is a process that
creates a plan whose execution produces a specified result given spec-
ified inputs. Plan generation uses tool descriptions to determine fea-
sible combinations of tools. In order to push the research, we take
as the ideal goal the automatic (“hands-off”) generation of plans.
However, we recognize that, for various reasons, user input may be
needed to select among several combinations of tools.

This paper describes CRADLE’s dataspace approach. A dataspace
is an abstraction that allows one to provide meaningful, compound
names to various properties of real or logical entities. We present
how this approach can be used to specify descriptions of computa-
tional components and also to chain together these components in
semantically consistent ways to yield simplified workflows.

2 Tool and Problem Specifications

Consider the situation where a scientist is computationally investi-
gating the flow characteristics of a class of aerodynamic structures.
For a given system of a body and external characteristics, there
may be several potential properties that could be calculated. Assume
there are tools that take various properties (radius, angle, velocity)
and generate datasets (such as meshes), tools that take datasets to
other datasets (such as other meshes and flow simulations), tools
that analyze datasets (yielding floats, integers and booleans) and
tools that convert between the different dataset formats used by
these tools.
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The scientist needs a way to compose these tools depending on
what is given and what is to be calculated. In order to do this, there
must be ways to describe tools and the problems that users want to
solve.

Consider a simplified example of a “body” whose properties in-
clude its geometry file, volume, mass, (average) density, velocity and
momentum. A “problem” specifies which properties will be provided
(the “givens”) and which will be calculated (the “goals”). At differ-
ent times, there will be different sets of givens and goals. Assume
that the scientist has at his disposal the following “tools”:

1. Three tools for calculating each of momentum, velocity or mass of
a body, given the other two. (There is one tool for each unknown).

2. Three tools for calculating each of average density, mass or vol-
ume, given the other two.

3. A tool that takes a body’s geometry file and yields its volume.
4. A tool that calculates the mass and volume of a system of bodies,

each with mass and momentum.

So how does one specify these tools and how would the scientist
specify what data he wants (given what data he has)?

In a programming language, a tool would be a method or function.
In WSDL[5], such a tool would be a web service[4] operation. In these
two systems, the machine-readable aspects of a “tool” description are
the types of its inputs and outputs. A type system ensures that a
composition of tools is consistent at the type level.

While type correctness is required, it is not sufficient for our pur-
poses. For instance, the first three tools mentioned in item #1 above,
take two floats and return a float (assuming velocity and momentum
are scalars) and are thus indistinguishable from the point of view of
the types. Of course, the problem is that the semantics of each tool
is not taken into account. Generally, the semantics of a tool is ex-
pressed as a comment and/or is implied by the name of the function
and the names of its inputs. It is difficult to effectively reason about
information in this form.

Another possible method is to require that the function name
indicate the quantity being produced. Unfortunately, there may be
tools with more than one output. Item #4, above, is an example of
such a tool that generates both mass and momentum.

One can associate one or more output names with each tool. How-
ever, there may be more than one tool producing the same output.
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For instance, there are three tools yielding mass in our example.
While the types are different, one could imagine examples where the
types are the same. A way to solve this problem is to treat the input
names as significant (as well as the output names).

While this approach goes a long way, there are still a few prob-
lems. One is that a name alone may not adequately specify a quan-
tity and its representation. For instance, if a velocity-producing tool
and a velocity-using tool use different units or formats, the tools
will not interoperate. Basically, this is a human issue – the system
can compare names but only humans can ensure that the names are
used consistently. Thus it is important that each name have an as-
sociated natural language description that, together with its type,
unambiguously describes the associated quantity and its format.

There is also a problem when two different users unintentionally
use the same term with different meanings. While it is possible for a
system to detect conflicting definitions, it is better to have a name
qualification scheme such that two independent people use differ-
ent qualifiers for the names they define. Examples of such schemes
include UUIDs, URIs, XML QNames and Java class names.

A related problem arises, for example, when one tool uses “width”
while another uses “breadth” for the same concept. In this case, the
two tools will be deemed incompatible when really they are compat-
ible. What would help is a way to equate two names.

There is also a problem with the “flatness” of names. Consider a
simulation of several interacting physical bodies, each with velocity,
a mass and momentum. In this case, a simple name, like “velocity,” is
ambiguous, since each body has a velocity. One could use names like
“b1 velocity” and “b2 velocity” but then a tool taking “velocity” as
an input will not apply. What is needed is a notion of compound
names, or paths. In the system above, the bodies could be named
“b1” and “b2” and their velocities would be named by “b1.velocity”
and “b2.velocity” (where the period combines two names). Tools
apply as if universally quantified over paths, so the tool described
above also can take inputs “b1.velocity” and “b1.mass” and yield
“b1.momentum.”

A final problem is illustrated by considering the computation of
the area of rectangles and ellipses. Both have “height,” “width” and
“area” properties, all floats, but the tools used to compute their
areas must be different. The issue is that property names alone do

81



not determine the semantics of the object of which they are a part.
Thus there needs to be a way to associate a tool with a class of
objects.

3 The Dataspace Model

In this section, we describe an abstract model called the dataspace
model that addresses the issues of the previous section. Briefly, a
dataspace is a tree-like structure with named slots as leaves. A slot
can be thought of as a place where a data value can be deposited.
Dataspaces have types that imply a vocabulary of slot names and
their semantic interdependencies. Each tool is associated, via a rela-
tion called “appliesTo,” with one type of dataspace. Logically when
a tool runs, it is passed a dataspace of the appropriate type; the tool
retrieves its inputs from certain slots and places its outputs in other
slots. Roughly, two tools can be composed only if they both have
the same “appliesTo” type and the names of the inputs of one are
among the names of the outputs of the other. We now discuss the
model in more detail.

A dataspace is used to model some real world or logical entity,
such as a physical body (of various shapes), a surface, a flow field,
a particle or a galaxy. An entity can also be a composite thing like
a system of several bodies or a flow interacting with the surface of
some structure.

A dataspace is made up of a collection of named slots each ca-
pable of holding one piece of information, like a float, an array of
floats or a filename. Each slot is either empty or filled and, when
filled, its content denotes one aspect of the entity being modeled. An
aspect is some parameter, attribute, property or view of an entity.
Example of aspects are a body’s mass, velocity or a reference to a file
containing its geometry. Different aspects can be used for different
representations or units for the same property.

It is possible that an aspect of an entity is itself a composite
entity, in which case the aspect is represented by another dataspace,
refered to as a subdataspace. In general a dataspace forms a tree
with named edges and slots at the leaves. For example, a velocity
aspect might be a vector modeled by a subdataspace with x, y and z
aspects. Similarly a system with two bodies could be modeled as two
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subdataspaces named “b1” and “b2.” In this case, “b1.velocity.x”
names a slot that contains the x component of b1’s velocity.

Each slot or subdataspace is considered one aspect and is given
an aspect name. A compound name, like “b1.velocity.x,” is called an
aspect path.

Aspects are typically interdependent and, so, the values of cer-
tain slots can be computed from others. For example, a physical
body might have aspects mass, geometry, velocity, volume, average
density and momentum. Given any two of mass, velocity or momen-
tum, the third can be calculated. Volume, mass and density are in a
similar relationship and, presumably, volume can be computed from
geometry.

A dataspace type denotes a set of dataspaces and is typically asso-
ciated with some class of entities. A dataspace type defines a vocab-
ulary of aspect names and their associated types and interpretation.
The type also denotes a set of constraints on the values of aspects and
their interdependencies. These semantic properties are given explic-
itly by an associated description string or are implied by the names
of the type and its aspects. Essentially, the type name becomes a
proxy for these human-understood semantics.

Consider the following example definition

dataspace Body {

aspect URL geometryFile;

aspect Float volume;

aspect Float mass;

aspect Float density;

aspect Float velocity;

aspect Float momentum;

}

While CRADLE actually uses an XML syntax, a more convenient
syntax like this is better for explanatory purposes. This definition
defines a type named “Body” with six aspects. The first aspect is
named “geometryFile” and is of type “URL.” The remaining five
aspects are of type Float with names “volume,” “mass,” “density,”
“velocity” and “momentum.” We assume “URL” and “Float” are
defined elsewhere. The interdependencies between aspects are im-
plied by the aspect names. A description string could be added to
the definition if further explanation was needed.
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Each dataspace type definition defines a new, independent type.
Even if the aspects are identical, it is assumed that their interde-
pendencies are different, as implied by the name of the type or its
description. For instance, there could be two type definitions with
identical aspects, “height,” “weight” and “area,” but having differ-
ent names, “Rectangle” and “Ellipse.” They would denote different
types.

The CRADLE type system supports inheritance where inheri-
tance implies an “isa” or subset relation – instances of a derived type
are instances of the base type. A derived type has all the aspects of
the supertype and can add new aspects, refine existing aspects and
add additional constraints (between aspects). For example, Square
could be a subtype of Rectangle, adding the constraint that the
“height” and “width” aspects are the same. An aspect is refined if
the derived aspect’s type is a subtype of the base aspect’s type and if
any description-implied constraints of the derived aspect imply the
corresponding constraints of the base aspect.

Now that the dataspace model has been described, we turn to
CRADLE tool descriptions, which use the dataspace model as a
basis for defining their inputs and outputs. Each tool description
has an appliesTo attribute, a set of input aspect paths and a set of
output aspect paths. Consider the following.

tool momentum_calc {

appliesTo Body;

input mass;

input velocity;

output momentum;

...

}

This definition describes a tool that yields the momentum of a body,
given its mass and velocity. The ellipsis is to indicate that there may
be other attributes for the tool, such as execution information.

The “appliesTo” attribute identifies a dataspace type and specifies
that the tool is capable of computing aspect values relative to the
associated kind of entity. Thus the “appliesTo” type scopes the tool’s
inputs and outputs.

The “appliesTo” type also determines the relative semantics of the
inputs and outputs. Recall from section 2 the example of two area-
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computing tools with the same inputs and output, one for rectangles
and one for ellipses. In this case, the two tool descriptions would be
the same except one would have “appliesTo Rectangle” and the other
“appliesTo Ellipse.”

4 Plan Generation and Execution

As discussed above, a dataspace type defines a vocabulary of slot
names and the semantics of their interdependencies. A tool is spec-
ified with respect to some dataspace type and, so, its semantics is
determined by the relative semantics of its inputs to outputs.

When a user uses CRADLE, he presents a problem which consists
of a problem type, a set of givens and a set of goals. The problem type
is a dataspace type and each given and goal is an aspect path relative
to the problem type. During this process, the CRADLE repository
may be used to browse the set of types and their aspects. An example
of a problem is as follows.

problem {

problemType Body;

given velocity;

given geometryFile;

given density;

goal momentum;

}

Given a problem, the CRADLE plan generator attempts to find a
a plan, which is a directed acyclic graph of steps. Each step contains
the name of a tool and the set of prerequisite steps that it must
follow. The plan also indicates which steps yield one or more of the
goals. The plan must be such that each tool’s “appliesTo” type is a
supertype of (or possibly equal to) the problem type. Each input of
each tool must be among the problem’s givens or among the outputs
of a previous tool. Each of the problem’s goals must be among the
outputs of some tool.

The full plan generation algorithm is too complex to present here,
so we give a quick summary. The algorithm uses backward chain-
ing and works back from the goals. At each point it has a list,
neededAspects, of aspects (really aspect paths) that need to be com-
puted and a list, producedAspects, of aspects that are given or com-
puted by some tool. Iteratively, it selects a needed aspect, subgoal,
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and finds a tool, tool, whose “appliesTo” is a supertype of (or equal
to) the problem type and whose outputs contain subgoal. If there is
no such tool, it backtracks if possible. If there is more than one tool,
it tries each in turn. To handle the “flatness” problem mentioned
in section 2, the algorithm also considers applying a tool to certain
subdataspaces of the original problem, in addition to applying it at
the root. The outputs of tool are added to producedAspects and its
inputs are added to neededAspects. Also a step is allocated and added
to the plan. The iteration terminates when all neededAspects are in
producedAspects.

Plan execution is the process by which a plan is executed. It fol-
lows the usual rules for executing a DAG. The dataspace model
is used to link outputs of one tool to the inputs of the next. As
mentioned earlier, the dataspace concept is logical and it is not nec-
essarily the case that any real data structure directly implements
the dataspace, although some implementations may. The purpose of
the dataspace concept is to provide a conceptual model interrelating
types, tool descriptions, problem specification, plan generation and
plan executions.

As examples, one implementation may directly implement the
dataspace as a centralized hash table from which the tools extract
their inputs and into which they place their outputs. Another im-
plementation may instantiate a software component for each step
and use the fully qualified input and output names to hook together
ports. A third implementation might generate a script using a “man-
gled” form of the aspect paths to name files or script variables that
carry data produced by one step to later ones.

5 Status and Future Work

A CRADLE prototype has been implemented using a client-server
model with a protocol similar to web services. The server is in Java
and accesses a MySQL database containing tables for tool and datas-
pace type descriptions. The type descriptions can be used by tool
specifiers and by users posing “problems” to CRADLE. Type de-
scriptions are also used during plan generation to reason about in-
heritance and the types of subdataspaces. Tool descriptions are used
during plan generation and may also be used during plan execution
to obtain execution-related information.
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For future research, we will look at applying a similar method-
ology to data collections and the tools that operate on them. As
RDF[3] is a popular standard for expressing and sharing machine
processable information on the web, we will investigate using RDF/-
XML[2] in the client-server protocol. Also, we plan to look at vari-
ous extensions to the dataspace model, including arrays, parameter-
ized aspects (similar to methods) and parameterized types. Adding
machine-processable constraint expressions to dataspace types is an-
other potential avenue of investigation.

Acknowledgments: We gratefully acknowledge the contributions of Ken
Gee and Karen McCann in the early discussions regarding the direc-
tion and design of the project.
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Abstract. To improve the resource adjustment capability of business
application cluster systems, we have devised a new grid system in which
clusters borrow lower-level computing resources from each other. Hetero-
geneous resources that coexist in these clusters are described using OWL
Web Ontology Language (OWL) to realize a flexible resource discovery.
In this paper we present its system structure and OWL-based resource
discovery.

1 Current Business Application Cluster Systems and
Their Problem

In contrast to traditional grid systems whose main target is scientific
and engineering computation, our research focuses on cluster sys-
tems used for business applications such as web application servers,
content management systems, or groupware systems.

These applications often show high load fluctuations according to
date and time, and at the same time have severe service level require-
ments such as response time, calling for an alternative approach to
conventional grids.

In these systems, jobs are executed as shown in Figure 1.
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Fig. 1. Job execution in current cluster systems



The Cluster Manager controls the execution of jobs in a cluster
and assures failover of jobs in case of a hardware or software failure.
The resource assignment in the cluster is managed centrally to reflect
the resource allocation policy of that cluster.

If there is an overloaded node in the cluster, jobs are moved from
one node to another (as shown with an arrow in Figure 1) to adjust
the load.

Such adjustments limited to a single cluster cannot cope with an
extremely high load, causing performance degradations such as a
delay in response time.

Furthermore, if nodes reserved for provisioning purposes are used
up to cope with a fault or an overload, redundancy against further
faults or further overloads cannot be secured.

To solve these problems, resource adjustment that spans multiple
clusters is demanded. We want to realize this resource adjustment
by connecting multiple clusters in a grid-like way.

The traditional approach for connecting cluster systems into a
grid is shown in Figure 2. Jobs are either submitted to the grid and
allocated to a cluster, or the execution of a job is delegated from one
cluster to another cluster.
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Fig. 2. Conventional method to form a grid by connecting clusters

A problem of this approach is that the execution of jobs cannot
easily be assured at the level realized in cluster systems. In a cluster
system, the cluster manager typically uses a heartbeat and a quo-
rum mechanism for a reliable fault detection and job failover. Such
mechanisms are usually not available to jobs submitted to a grid.

Another problem is the lack of practical mechanisms to reflect
a resource allocation policy to another cluster. Setting priorities to
jobs or allocating a job to a specific node is not too difficult within a
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cluster, but in order to apply such allocation policy to jobs submitted
to a grid, an elaborate mechanism and a new protocol are needed.

In these respects, this conventional method of grid deployment
has a wide discrepancy with the job management in current business
application cluster systems.

2 Inter-Cluster Resource Borrowing

As an alternative to the conventional method of grid deployment
discussed above, we have devised an approach that we call inter-
cluster resource borrowing and is more suited to the resource and job
management model in current cluster systems. Its overall structure
is shown in Figure 3.
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Fig. 3. Abstract structure of inter-cluster resource borrowing

In this approach, each cluster operates as a natural extension
of the current cluster. The resource borrowing between clusters is
implemented at the dedicated layer that we call grid layer.

If Cluster A in Figure 3 is suffering an overload or a fault that
cannot be made up for by an adjustment within Cluster A, the clus-
ter manager of Cluster A issues a resource request to the grid layer.
The cluster manager of Cluster B is notified of that request in order
to transfer some node from Cluster B to Cluster A.

After the node transfer, jobs are moved to the acquired node to
accomplish the load adjustment within Cluster A.

The node transfer can be implemented in various ways. Network
boot is the node transfer mechanism that we think most promising.
As an instance of network boot mechanisms, we are investigating
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SAN boot. SAN boot is a mechanism to change the correspondence
of a node to a boot image on a disk by placing boot images on
a disk on a storage area network (SAN). By using the SAN boot
mechanism, a node borrowed from another cluster can be booted
with the boot image of the borrowing cluster, making it easier to
place the node under the control of the borrowing cluster.

In addition to the network boot, virtualization methods such as
virtual machines can also be employed to realize node transfer.

In conventional grids, a resource was managed by a fixed cluster
and jobs were moving across clusters. In an inter-cluster resource
borrowing system, the execution of a job is always control by a fixed
cluster, and it is the resources that move across clusters.

A major problem of implementing this system is the discovery of
resources to be borrowed. We will discuss it in the next section.

3 Resource Discovery from Heterogeneous Resources

A business application cluster, which is the target of the inter-cluster
resource borrowing, has usually multiple application programs run-
ning on it. These applications often run on different operating sys-
tems and/or on processor architectures. In addition to this inter-
nal heterogeneity of a single cluster, clusters are usually constructed
with their own goals in mind, so there is a high heterogeneity among
clusters.

Furthermore, resources that are physically equivalent can differ in
the area or domain in which they can be used. For example, a boot
image on a SAN disk can only be used from a node that is connected
to the SAN.

In these regards, there is a great deal of diversity among available
or required resources.

Inter-cluster resource borrowing calls for a technology to discover
adequate resources efficiently from these diversified resources.

In order to perform this discovery, both a description mechanism
and a matching mechanism are needed. We will discuss them below.

3.1 Description of Heterogeneous Resources

Resources that are target of this discovery should be described in
some way. In addition, a mechanism to specify requirements toward
desired resources is necessary.
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In OGSA (Open Grid Services Architecture) [1] and Globus Toolkit
[3], which is its reference implementation, a resource can be described
by a service data. However, requirements can be handled only in a
very limited way. For example, GLUE Computing Element (CE) [4]
used in Globus can describe hardware resources, but dependency be-
tween resources (such as a server and a disk that can be connected to
it) cannot be described. Descriptions to handle network topology or
bandwidth are also lacking. Resource Specification Language (RSL)
[5] has a limited capability to express requirements of an application
program, but the RSL description is not currently matched against
formal resource descriptions.

It is possible to make a new fixed specification (or a fixed exten-
sion of these existing specifications) for the resource description, but
in order to describe diversified resources including those yet to come,
a more flexible method of resource description is preferred.

3.2 Use of OWL

To describe these wanted and available resources, we have introduced
the OWL Web Ontology Language (OWL)[6]. In the sense that we
are using a Semantic Web technology for implementing a kind of grid
infrastructure, our study can be classified to a Semantic Grid[7].

By using OWL, off-the-shelf inference engines that support OWL
can be used for matching of resource descriptions. In addition, a
flexible resource description is realized as follows.
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Engine

“A cluster has physical nodes.
Each node is of som e 

architecture.”

“Cluster1 has a 
physical node 
called Node1.
Node1 is of x86 
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“I want a 
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of x86 
architecture.”

Search
Result

“Cluster1 is 
likely to have 
that resource.”

Fig. 4. Matching of OWL descriptions
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As shown in Figure 4, three kinds of OWL descriptions are in-
volved:

1. Model Description.
General concepts and their relations are defined here.

2. Instance Description.
Actual resources in given clusters are described here based on the
above model.

3. Requirement Description.
Requirements toward resources that a cluster wants to borrow
are stated here also based on the same model.

As model itself is also written in OWL and loaded at runtime,
a new model to describe additional resources can be incorporated
without modifying the source code of the grid layer (though the
cluster manager itself should be able to process the new resource
descriptions).

Details of the OWL usage are stated in Section 6.

4 Overall System Structure

The overall structure of our implementation is shown in Figure 5.
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Fig. 5. Overall structure of inter-cluster resource borrowing system
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This system is composed of two layers: the cluster layer and the
grid layer. They have following responsibilities:

– Cluster layer.
• Execution control of jobs
• Resource management and allocation within the cluster

– Grid layer.
• Global adjustment of resource allocation
• Sharing of resource information
• Processing of resource request
• Aggregation and resolution of resource requirements
• Determination of candidate clusters to provide resource
• Processing of node transfer

Of these, the grid layer is further divided into following two com-
ponents:

– Grid agent.
A grid agent resides in each cluster and provides the interface
between the grid layer and the cluster.
In addition to the mutual transfer of resource information, the
aggregation of resource information is also performed here.

– Grid manager.
A grid service to perform the grid-wide processing. Part of the
resource information is stored here.

A prototype of this system is currently being implemented as
services on Globus Toolkit 3 (GT3).

5 Two-Phase Resource Discovery

The resource information consulted at the resource discovery span
from static to dynamic. If we can manage all the information cen-
trally on the grid manager, the resource discovery can be efficiently
contained to the grid manager. However, if all the resource informa-
tion is to be registered frequently to the grid manager, its load may
rise excessively and ruin the scalability of the grid. Furthermore, a
dynamic information that change without intervention of the grid
agent or the cluster manager cannot be registered to the grid man-
ager consistently.

Therefore, we separated the resource discovery into two phases:
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Phase 1: Candidate cluster discovery at the grid manager
Phase 2: Resource discovery at the grid agent

Some of the resource information is consulted in both phases, and
others are referenced only in the second phase. The criteria of this
classification are discussed below.

We assume that resource information can be classified into three
categories:

Category 1: Static resource information.
Changes itself rarely and can be registered or cached to the grid
manager. The operating system or the processor architecture of
a server are examples of information of this category.

Category 2: Dynamic resource information determined by the clus-
ter manager.
The resource information that changes dynamically under the
control of the cluster manager. These changes can be notified
from the cluster manager to the grid manager to keep the infor-
mation at the grid manager consistent. The kind and the number
of jobs running on a node can be classified here.

Category 3: Dynamic resource information determined by compo-
nents other than the cluster manager.
The cluster manager does not directly affect changes of this re-
source information. The network topology information including
connectivity, bandwidth or delay is an example of the information
of this category.

In this system, the resource information of Category 1 and 2 is
transferred from the grid agent to the grid manager and registered
there. Phase 1 of the resource discovery depends only on the infor-
mation of these two categories. In Phase 2, the resource information
of Category 3 is measured dynamically, and the information of all
three categories is used to determine the resource to be borrowed.

6 Resource Description and Constraint Resolution Using
OWL

As stated in Section 3.2, we are using OWL to describe resources and
resource requirements. There are three sublanguages of OWL: OWL
Lite, OWL DL (description logics), and OWL Full. Of these, OWL
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Full allows most flexible descriptions, but there is no guarantee that
OWL Full descriptions can be processed in finite time, so it is not
feasible here. On the other hand, while OWL Lite descriptions are
most simple and can be processed most efficiently, some functional-
ities not included in OWL Lite (such as owl:oneOf) were necessary.
Therefore, we have selected OWL DL, whose description capabil-
ity and computation complexity appears appropriate, for resource
descriptions.

Currently we are using Jena 2.1[8], which has a full support of
OWL Lite and a partial support of OWL DL, as the inference engine.

Host

PhysicalHost

BorrowableEntityIdentifiableEntity boolean

Architecture
anyURI

borrowable

isArchitecureOf
informationServiceURL

subClassOf
subClassOf

subClassOf

Fig. 6. Partial Example of Model Description

In the current prototype, we are using a handwritten OWL model
with many elements derived from GLUE CE. An example model is
shown in Appendix A and its partial structure is shown in Figure 6.
PhysicalHost is a resource that share properties of Host including
the processor architecture, but has additional properties including
connectivity to a network.

Appendix B shows an requirement description based on this model.
This description is used in a request to find a cluster which has a
physical node that can boot a specific logical node (lnode1). The
first class in this description defines a cluster which has a desired
physical host. Three restrictions to this physical host are described
in the definition of the second class: It should be borrowable, should
be of the same architecture as lnode1, and should share a storage
area network with the network storage that hosts the boot image of
lnode1.
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We are planning to develop tools to automatically convert descrip-
tions written in extended GLUE CE or in cluster-native formats to
OWL. CIM(Common Information Model)-based standards [9] are
also candidates of resource information sources.

7 Implementation Status and Future Directions

A stand-alone prototype (i.e. without connection to a real cluster
manager) of the grid layer is already runnable. The resource dis-
covery using the requirement description in OWL and the resource
request is realized. The node transfer is currently just simulated.

Following extensions are planned:

– Interface to real cluster managers.
In order to realize an actual node transfer, at least some func-
tionality of a real cluster manager is needed. We are examining
feasibility of several clustering software (including our in-house
product cluster manager) to connect to our grid layer.

– Policy handling in resource discovery.
Besides hardware and software property of resources, policies
such as the security or service level policy should be respected
in the resource discovery. We are investigating ways to incorpo-
rate policy descriptions into the OWL-based resource discovery.

– Aggregation of resource information.
Registering resource information of individual resources to the
grid manager entails a high processing time at the registration
and the first phase of resource discovery. It would be desirable if
we can make a summarized version of the resource information
and register it to the grid manager for a faster resource discov-
ery. Depending on applications, a certain degree of false positives
of resource information can be allowed, as the second phase re-
alizes an accurate discovery of resources. If overlooking available
resources is acceptable, false negatives are also allowed. [11] men-
tions to an aggregation function that is related to our idea.

8 Conclusion

In this paper, we have illustrated a problem of current business appli-
cation cluster systems, and how the inter-cluster resource borrowing
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can be applied to cope with that problem. By using OWL for the
description of resources to be borrowed and using an OWL engine
as the matching mechanism, a flexible resource discovery is realized.

We are going to further implement this architecture. Resource
borrowing between clusters in a data center is targeted first, and
we aim to support borrowing between clusters that span wide-area
networks as future prospects.
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A Example OWL Model
Description

<owl:Class rdf:ID="BorrowableEntity" />
<owl:Class rdf:ID="IdentifiableEntity" />
<owl:Class rdf:ID="BootableEntity" />
<owl:Class rdf:ID="Cluster">

<rdfs:subClassOf
rdf:resource="#IdentifiableEntity" />

</owl:Class>
<owl:Class rdf:ID="Host">

<rdfs:subClassOf
rdf:resource="#BorrowableEntity" />

<rdfs:subClassOf
rdf:resource="#IdentifiableEntity" />

</owl:Class>
<owl:Class rdf:ID="PhysicalHost">

<rdfs:subClassOf rdf:resource="#Host" />
</owl:Class>
<owl:Class rdf:ID="LogicalHost">

<rdfs:subClassOf rdf:resource="#Host" />
<rdfs:subClassOf
rdf:resource="#BootableEntity" />

</owl:Class>
<owl:Class rdf:ID="Network" />
<owl:Class rdf:ID="StorageNetwork">

<rdfs:subClassOf rdf:resource="#Network" />
</owl:Class>
<owl:Class rdf:ID="SAN">

<rdfs:subClassOf
rdf:resource="#StorageNetwork" />

</owl:Class>
<owl:Class rdf:ID="Storage" />
<owl:Class rdf:ID="NetworkStorage">

<rdfs:subClassOf rdf:resource="#Storage" />
<rdfs:subClassOf rdf:resource="#Host" />

</owl:Class>
<owl:Class rdf:ID="StoragePartition" />
<owl:Class rdf:ID="Architecture">

<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#i386" />
<owl:Thing rdf:about="#powerpc" />

</owl:oneOf>
</owl:Class>
<Architecture rdf:ID="i386" />
<Architecture rdf:ID="powerpc" />
<owl:DatatypeProperty rdf:ID="borrowable">

<rdfs:domain rdf:resource="#BorrowableEntity" />
<rdfs:range rdf:resource="&xsd;boolean" />

</owl:DatatypeProperty>
<owl:DatatypeProperty
rdf:ID="informationServiceURL">
<rdfs:domain rdf:resource="#IdentifiableEntity" />
<rdfs:range rdf:resource="&xsd;anyURI" />

</owl:DatatypeProperty>
<owl:ObjectProperty rdf:ID="controls">

<rdfs:domain rdf:resource="#Cluster" />
<rdfs:range rdf:resource="#Host" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isOfArchitecture">

<rdfs:domain rdf:resource="#Host" />
<rdfs:range rdf:resource="#Architecture" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isArchitectureOf">

<owl:inverseOf rdf:resource="#isOfArchitecture" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="connects">

<rdfs:domain rdf:resource="#Network" />
<rdfs:range rdf:resource="#Host" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isConnectedTo">

<owl:inverseOf rdf:resource="#connects" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="connectsPhysicalHost">

<rdfs:subPropertyOf rdf:resource="#connects" />
<rdfs:domain rdf:resource="#Network" />
<rdfs:range rdf:resource="#PhysicalHost" />

</owl:ObjectProperty>
<owl:ObjectProperty
rdf:ID="isConnectedPhysicalHostTo">

<owl:inverseOf
rdf:resource="#connectsPhysicalHost" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="connectsNetworkStorage">

<rdfs:domain rdf:resource="#Network" />
<rdfs:range rdf:resource="#NetworkStorage" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="includes">

<rdfs:domain rdf:resource="#Storage" />
<rdfs:range rdf:resource="#StoragePartition" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hosts">

<rdfs:domain rdf:resource="#StoragePartition" />
<rdfs:range rdf:resource="#LogicalHost" />

</owl:ObjectProperty>

B Example OWL
Requirement
Description

<owl:Class rdf:ID="ClustersIWantNow">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="&cst;Cluster" />
<owl:Restriction>

<owl:onProperty rdf:resource="&cst;controls" />
<owl:someValuesFrom
rdf:resource="#PhysicalHostsIWantNow" />

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
<owl:Class rdf:ID="PhysicalHostsIWantNow">

<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="&cst;PhysicalHost" />
<owl:Restriction>

<owl:onProperty
rdf:resource="&cst;borrowable" />

<owl:hasValue rdf:datatype="&xsd;boolean">
true

</owl:hasValue>
</owl:Restriction>
<owl:Restriction>

<owl:onProperty
rdf:resource="&cst;isOfArchitecture" />

<owl:someValuesFrom>
<owl:Restriction>

<owl:onProperty
rdf:resource="&cst;isArchitectureOf" />

<owl:hasValue rdf:resource="#lnode1" />
</owl:Restriction>

</owl:someValuesFrom>
</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource=
"&cst;isConnectedPhysicalHostTo" />

<owl:someValuesFrom>
<owl:Restriction>

<owl:onProperty rdf:resource=
"&cst;connectsNetworkStorage" />

<owl:someValuesFrom>
<owl:Restriction>

<owl:onProperty
rdf:resource="&cst;includes" />

<owl:someValuesFrom>
<owl:Restriction>

<owl:onProperty
rdf:resource="&cst;hosts" />

<owl:hasValue
rdf:resource="#lnode1" />

</owl:Restriction>
</owl:someValuesFrom>

</owl:Restriction>
</owl:someValuesFrom>

</owl:Restriction>
</owl:someValuesFrom>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
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